i v
4 " \\ i VIS
7 < "5”:’; »,
>~ INg
4 ‘ ¢ <
f.4 \
X
D X >
S e |/ |
) /A/ - AN
ot/ Al
NZ
N4 >
A
2 .
(i

INSTITUTE %t #AI11SC
UNIVERSITY OF SOUTH CAROLINA

Exceptions

Forest Agostinelli
University of South Carolina

Exceptions

* Exceptions signals an exceptional
occurrence during run-time

* Handles run-time errors by allowing the
program to crash gracefully and keep
executing

* Exceptions are Objects
— These Objects have an “exception message”

 “Throwing” an exception is when an
exception object is created

* “Handling” an exception is when special
code detects and deals with the
exceptional occurrence

Exceptions

* 3 Major Parts to Exceptions
1. Creating Exceptions
2. Throwing (Using) Exceptions
3. Handling Exceptions

Creating Exceptions

* In Java there are several predefined Syntax for Creating an Exception
exceptlons
— Exception (most general) public class <<id>> extends <<an Exception>>
— NullPointerException {
— IndexOutOfBoundsException <cconstructors>>;
— |OException }
* Creating a specific kind of Exception involves
inheriting from one of the predefined Example
Exceptions public DivideByZeroException extends Exception
{
. public DivideByZeroException()
* Only write the Constructors / B
— Make sure to use “super” to construct the , super(“Attempted to Divide by Zero”);
superclass EXCGptiOI’l public DivideByZeroException(String msg)
— Set the exception message { super(msg) ;
— Do not override “getMessage”) }

Creating Exceptions

° When a method COUId cause an Exception’ Syntax for a Method that throws an Exception
then then programmers need to be notified ,
. <<scope>> <<return type>> <<method id>> (<<parameters>>)
to handle it throws <<List of Exceptions>>
e The reserved word “throws” is used in the | 1
. . . <<method body>>
method sighature to indicate the method }
could cause an exception
e Each exception is listed by their identifier Example
and are Separated using a comma public double evaluate(char op, double nl, double n2)
throws DivideByZeroException, UnknownOpException
{

Creating Exceptions

° When a method COUId cause an Exception’ Syntax for a Method that throws an Exception
then then programmers need to be notified ,
. <<scope>> <<return type>> <<method id>> (<<parameters>>)
to handle it throws <<List of Exceptions>>
* The reserved word “throws” is used in the |
. L <<method body>>
method signature to indicate the method }
could cause an exception
* Each exception is listed by their identifier Example
and are separated using a comma public double evaluate(char op, double nl, double n2)
throws DivideByZeroException, UnknownOpException
{

Throwing Exceptions

* |n a method that throws exceptions there Syntax for Throwing the Exception
should be cases where that kind of
exception happens

 The reserved word “throw” is used when
an exception occurs

— Method signature uses “throws”
— Method body uses “throw” Example

* Follow “throw” by then constructing an
instance of that kind of exception

throw new <<Exception Constructor>>

//Inside of method evaluate

throw new DivideByZeroException();

Throwing Exceptions

* In a method that throws exceptions there Syntax for Throwing the Exception
should be cases where that kind of
exception happens

* The reserved word “throw” is used when
an exception occurs

— Method signature uses “throws”
— Method body uses “throw” Example

* Follow “throw” by then constructing an
instance of that kind of exception

throw new <<Exception Constructor>>

//Inside of method evaluate

throw new DivideByZeroException();

Handling Exceptions

Handling an Exception

* Methods that throws exceptions must be

handled in a “try-catch” block ’E"y
* The method that could cause the exception <<Method that throws the Exception>>
must be within the body of the try-block }

catch(<<Exception type>> <<id>>)

— Otherwise the method would cause a syntax error | {
<<Handle the Exception>>

* The exception that is handled must be }
declared in the arguments of the catch-block Example
— Exception type followed by an identifier E"y

* The exception is then handled in the body of
the catch-block

result = evaluate(nextOp, result, nextNumber);

. : , }
— Usually a good idea to print the exception catch(DivideByZeroException e)
message using either “getMessage” or {

e.printStackTrace();

“printStackTrace” }

Handling Exceptions

If a method causes an exception in the try-
block then the program immediately jumps to
the corresponding catch-block

After the exception has been handled the
program continues after the try-catch block

A try-catch block can only have 1 try-block and
may have 1 or more catch-blocks

Multiple Catch-blocks must be ordered from
most specific exception to least specific
exception

— Otherwise causes an unreachable code syntax
error

— Most general exception is “Exception”
With multiple catch-blocks the most

appropriate catch-block runs corresponding to
the exception that was thrown

Syntax for Handling a Multiple Exception

<<Method that throws the Exceptions>>

}

catch(<<Most Specific Exception type>> <<id>>)

{

<<Handle the Most Specific Exception>>

}

catch(<<Most General Exception type>> <<id>>)

{

<<Handle the Most General Exception>>

}

Handling Exceptions

If a method causes an exception in the try-
block then the program immediately jumps to
the corresponding catch-block

After the exception has been handled the
program continues after the try-catch block

A try-catch block can only have 1 try-block and
may have 1 or more catch-blocks

Multiple Catch-blocks must be ordered from
most specific exception to least specific
exception

— Otherwise causes an unreachable code syntax
error

— Most general exception is “Exception”
With multiple catch-blocks the most

appropriate catch-block runs corresponding to
the exception that was thrown

Example

try
{

;esult = evaluate(nextOp, result, nextNumber);
}
catch(DivideByZeroException e)
{ e.printStackTrace();
iatch(UnknownOpException e)
{ e.printStackTrace();
gatch(Exception e)
{ e.printStackTrace();
}

Handling Exceptions

* A “finally” block can be optionally added
after a sequence of catch-blocks

* The code in the finally-block will execute
whether or not an exception is thrown

Finally Block Syntax

<<Method that throws the Exception>>
}

catch(<<Exception type>> <<id>>)

{
}
finally
{

}

<<Handle the Exception>>

<<code that will execute with or without exceptions>>

Example
try

{

result = evaluate(nextOp, result, nextNumber);

}
//Catches

finally
{

}

System.out.println("result = " + result);

Calculator Example

Problem: We must create a simple Must handle a variety of exceptions while
calculator program keeping the program running

Keeps track of a resulting value

Performs the operations
— Addition

— Subtraction

— Multiplication

— Division

User provides input via the console

Input follows <<operator>> <<value>>
— Example “+ 3”

Calculator Example

/*
* Written by JJ Shepherd
*/
public class DivideByZeroException extends Exception

{
public DivideByZeroException()

{

}
public DivideByZeroException(String msg)

{

super("Dividing by Zero!");

super(msg);
}
}
/*
* Written by JJ Shepherd
*/

public class UnknownOpException extends Exception

{
public UnknownOpException()

{
}
public UnknownOpException(String msg)
{

}

super("Tried to use an unknown operator");

super(msg);

public double evaluate(char op, double nl, double n2)
throws DivideByZeroException, UnknownOpException

{

double answer = 0.0;

switch(op)

{

case '+':
answer
break;

nl + n2;

case
answer
break;
case '*':
answer
break;
case '/':
if((-PRECISION < n2) && (n2 < PRECISION))
throw new DivideByZeroException();
answer = nl / n2;
break;
default:
throw new UnknownOpException(op+" was used");

nl - n2;

nl * n2;

}

return answer;

Handling Additional Arguments

* You can have an exception with additional arguments that you then use to
create a message

public InvalidOpinionException(String opinion, String permittedOpinion) {
super("Your opinion '" + opinion + "' is not permitted. An example of a
permitted opinion is " + permittedOpinion);

Handling Additional Arguments

public InvalidOpinionException(String opinion, String permittedOpinion) {
super("Your opinion '" + opinion + "' is not permitted. An example of a permitted opinion is " + permittedOpinion);
I

public static void main(String[] args) throws InvalidOpinionException {
Scanner scanner = new Scanner(System.in);
Set<String> permittedOpinions = new HashSet<String>();
permittedOpinions.add("Pineapples go on pizza.");
permittedOpinions.add("Go Gamecocks!");
String opinion = scanner.nextLine();
if (permittedOpinions.contains(opinion)) {
System.out.println("Congratulations!");
} else {
scanner.close();
throw new InvalidOpinionException(opinion, getRandomElement(permittedOpinions));

by

scanner.close();

Go Clemson!

Exception in thread "main" InvalidOpinionException: Your opinion
'Go Clemson!' is not valid. An example of a valid opinion is Go
Gamecocks'!

at InvalidOpinionException.main(InvalidOpinionException.java:26)

Pineapples go on pizza.
Congratulations!

