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Topics Covered in This Class

* Part 1: Search * Part 4: Machine Learning
e Pathfinding

 Uninformed search Supervised learning

e Informed search * Inductive logic programming
e Adversarial search * Linear models
* Optimization  Deep neural networks

e Local search
e Constraint satisfaction

* Part 2: Knowledge Representation and

e PyTorch
* Reinforcement learning

Reasoning * Markov decision processes
* Propositional logic * Dynamic programming
* First-order logic * Model-free RL
* Prolog * Unsupervised learning
* Part 3: Knowledge Representation and * Clustering
Reasoning Under Uncertainty . Autoencoders
* Probability

e Bayesian networks



* Bayes’ Rule
* Chain Rule and Conditional Independence
* Bayesian Networks



Bayes’ Rule

* Product Rule
* P(a,b) = P(a|b)P(b)
* P(a,b) = P(bla)P(a)
* Bayes’ Rule

o P(b|a) — P(a|b)P(b)

P(a)
* Often, we perceive evidence as the effect of some unknown cause
* We perceive toothache, which may be due to a cavity

* It may be a lot easier to model the probability of the effect given the cause
 |.e. P(symptoms|disease) may be known but P(disease | symptoms) may be unknown

* P(cause|effect) =

P(effect|cause)P(cause)

P(effect)




Meningitis Example and Concept Check

* Suppose the probability of having a stiff next if you have meningitis is
P(s|m)=0.7, the probability of having meningitis is P(m)=1/50000, and the
probability of having a stiff neck is P(s)=0.01. What is the probability of having
meningitis given a stiff neck, P(m|s)?

P(s|m)P(m) _ 0.7X< 0000 — 0.0014

* P(mls) = P(s) 0.01




Meningitis Example and Concept Check

P(sim)P(m) _ 0.7X

1
. — " 750000 _
P(m|s) 5) — 0.0014

* What if P(s)=0.00001? Then P(m|s)=1.4"
e But that’s not possible!
* What is wrong here?
* P(a) = )., P(a, b) //marginalization
* >.p, P(alb)P(b) //product rule

* P(s) = P(slm)P(m) + P(s|-m)P(—m)
e P(s|m) and P(m) affect the value of P(s)



Joint Distribution

e Assume we have n random variables that can take on d values

* If we are to store all of this in a table, we would need 0(d") entries
© P(X1, X0, ) X))



Chain Rule

* Product rule: P(X{,X,) = P(X{|X,)P(X,) = P(X,|X;)P(X;)
e P(X, X5, ..., X)) = P(X, | X0i—q, oo, X)) P(X g, -, X7)

e = P(X, | X—1, 0, X)) P(Xp_1 | Xi—p, oo, X)) P(Xp—s, o, Xq)

* = P(Xp|Xn_1, ., X)) P(Xpn_1|Xn—2, ... X1) .. P(X2|X1) P (X1)
« = [l P(Xi| X1, ey X1)

* This is just one way to write the joint distribution as a product of conditional
distributions

* As long as we follow the product rule, we can write this as a product of different
conditional distributions



Joint Distribution w/ Chain Rule

* P(Xl'XZJ ""Xn) — ?=1P(Xi|Xi—1l '"JX1)

* For each table we need []i; d! probabilities
* Still not less than 0(d™)



Conditional Independence

* P(X1,X31X3) = P(X1|X3)P(X2|X3)

e If X, and X, and conditionally independent given X5, what about P(X;|X,, X3)?
* P(X1,X,1X3) = P(X{|X,, X3)P(X,|X3) //product rule

* P(X{|X3)P(X,|X3) = P(X{|X,,X3)P(X,|X3) //conditional independence

* P(X11|X3) = P(X1]X5, X3)



Joint Distribution w/ Chain Rule and Conditional

Independence

¢ P(Xl,Xz,...,Xn) — ?=1P(Xi|Xl‘_1,...,X1)
* We can reduce the size of the tables using conditional independence

e Suppose each variable is conditionally independent of all other variables it is
conditioned on given, at most, r variables

* P(X1, X5, ... Xn) =111 P(X;|Vars(X;))

* Where Vars returns the (at most) r variables needed for X; to be conditionally independent of all
other variables

* For each table, we would need [T, d("+1) = nd("+1)

* Number of entries we need grows linearly with the number of variables instead of
exponentially

e |If | have 100 variables that can take on 2 different values
e Need 2190 = 1.3x103° probabilities

. How%\ller, if each variable can be conditionally independent from others given 3
variables

« 100%x23*1 = 1600




Bayesian Networks

* Bayesian networks give us a way of efficiently representing the full joint
distribution using independence and conditional independence in the form of a
graphical model

* Using Bayesian networks, we can also perform probabilistic inference in a
manner that is efficient in many practical scenarios

* Because probabilistic inference can be computationally intractable in the worst
case, we can use approximate inference algorithms when exact inference is
infeasible



Bayesian Networks

* Directed acyclic graphical model
* Directed acyclic graph (DAG)

* Directed edges connect pairs of nodes
* If thereis an arrow from X to Y, then X is said to be a parent of Y

* Nodes have a random variable X and a probability table specifying P(X|Parents(X))
* P(X1, X5, ... Xn) = [I'{ P(X;|Parents(X;))

* Key assumption: a random variable is conditionally independent of all of its non-descendents
given its parents

ﬁraph must be acyclic\

plz,y,z) =px) ply|x) p(z|y) pla,b,c,d) = p(a) p(bla) plc|a,b)p(d]|b)
O—~O—E Ons OmaC -
@ Corresponds to an order

over the variables
k(chain rule) j




Bayesian Networks

* A variable X is conditionally
independent of its non-descendents
(Zs) given its parents (Us) / \



Example: Plant Health Network

P(N=+n)

0.95

P(B=+b)
0.1
H P(Y=+y|H)
+h 0.7
-h 0.1

H P(T=+t|H)
+h 0.9
-h 0.05

*modified from AIMA

B N | P(H=+h|B,N)
+b +n 0.5

+b -n 0.05

-b +n 0.99

-b -n 0.6




Joint Distribution w/ Bayesian Networks

e Chain rule shows: P(Xy, X5, ..., X,) = [Iiv{ P(X;|Xi—1, ..., X1)
* Conditional independence shows: P(X;, X, ..., X)) = [liv{ P(X;|Vars(X;))

* Since Bayesian Networks encode conditional independence of all non-
descendents given their parents, we put nodes in topological order

* That is, any order consistent with the directed graph structure

* Since nodes are in topological order, they are only conditioned on their non-
descendents

* Therefore, P(X1, X5, ..., X)) = ?=1 P(X;|Parents(X;))



Dentist Example

 Toothache
* Cavity

e Catch (dentist tool that catches in a
hole in the teeth)

e Weather
Toothache

« P(X1, X5, ..., Xy) =[1iz1 P(X;|Parents(X;))

 P(Cavity,Toothache, Catch, Weather)

* Atopological order: Weather, Cavity, Catch, Toothache
 P(Weather)P(Cavity|Weather)P(Catch|Weather, Cavity)P(Toothache|Catch, Weather, Cavity)
« P(Weather)P(Cavity)P(Catch|Cavity)P(Toothache|Cavity)

e Other node orders are possible as long as they are in topological order
* E.g. Cavity, weather, toothache, catch



Traffic Example

* Traffic

* Umbrella
* Raining



Traffic Example 2

 T: Traffic
* R: It rains

 L: Low pressure (in
atmosphere not in sensor)

* D: Roof leaks
* B: Ballgame
* C: Cavity



Coin Flip Example

» Suppose you flip n coins

P(X1) P(X2) P(Xn)
h |05 h |05 o h |05
t |05 t |05 t |05




Hospital Alarm Example

e 37 variables with 509 probabilities (instead of 237 ~ 1011)

[Beinlich et al., 1989] CMINVOLSET
(VoNTHAGH)  DISCONNEGT
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Quick Quiz

o e Factor the joint probability

PA, B, C,D E F, G)

(&) °




Quick Quiz

o e Factor the joint probability

P4, B, C, D, E, F, G)
e = P(4) P(B|4) P(G|4) P(C) P(D|C) P(E|D) P(F|G, B, D)




Quick Quiz

Draw the Bayesian network corresponding to the
@ factored conditional probability

@ @ PA,B.C D E F. G
— P(4) P(B) P(G|4) P(C|B) P(D|C) P(E|C, D) P(F|G, C)



Quick Quiz

o o Draw the Bayesian network corresponding to the
factored conditional probability

e e PA, B, C.D,E, F, G)
P(A) P(B) P(G|A) P(C\B) P(D\|C) P(E|C, D) P(F\G, ()

cgc



P(R)

+r

1/4

3/4

P(T|R)

Simple Traffic Example: Causal Direction

+r

+t

3/4

1/4

+t

1/2

P(T, R)

+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

1/2




P(T)

+t

9/16

7/16

P(R|T)

Simple Traffic Example: Reverse Direction

+t

+r

1/3

2/3

+r

1/7

P(T, R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

6/7




Causality

* When Bayes’ nets reflect the true causal patterns:

e Often simpler (nodes have fewer parents)
e Often easier to think about
» Often easier to elicit from experts

* BNs need not actually be causal

* Sometimes no causal net exists over the domain
(especially if variables are missing)

* End up with arrows that reflect correlation, not causation

* What do the arrows really mean?

* Topology may happen to encode causal structure
* Topology really encodes conditional independence

P(zi|xy,...2;-1) = P(z;|parents(X;))



* P(X1,X5, ... Xy) =1l P(X;|Parents(X;))
* If, for each conditional probability table, we need [T, d"*D = ng+b

* Number of entries we need grows linearly with the number of variables instead of
exponentially

e Key assumption: a random variable is conditionally independent of all of its
non-descendents given its parents



