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Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and 
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and 
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders



Outline

• Bayes’ Rule
• Chain Rule and Conditional Independence
• Bayesian Networks



Bayes’ Rule

• Product Rule
• 𝑃 𝑎, 𝑏 = 𝑃 𝑎 𝑏 𝑃 𝑏
• 𝑃 𝑎, 𝑏 = 𝑃 𝑏 𝑎 𝑃 𝑎

• Bayes’ Rule
• 𝑃 𝑏|𝑎 = !(#|%)! %

! #

• Often, we perceive evidence as the effect of some unknown cause
• We perceive toothache, which may be due to a cavity

• It may be a lot easier to model the probability of the effect given the cause
• I.e. P(symptoms|disease) may be known but P(disease|symptoms) may be unknown

• 𝑃 𝑐𝑎𝑢𝑠𝑒|𝑒𝑓𝑓𝑒𝑐𝑡 = !(#$$#%&|%()*#)! %()*#
! #$$#%&



Meningitis Example and Concept Check

• Suppose the probability of having a stiff next if you have meningitis is 
P(s|m)=0.7, the probability of having meningitis is P(m)=1/50000, and the 
probability of having a stiff neck is P(s)=0.01. What is the probability of having 
meningitis given a stiff neck, P(m|s)?

• 𝑃 𝑚 𝑠 = !(*|,)! ,
! *

=
-./× !

"####
-.-1

= 0.0014



Meningitis Example and Concept Check

• 𝑃 𝑚 𝑠 = !(*|,)! ,
! *

=
-./× !

"####
-.-1

= 0.0014

• What if P(s)=0.00001? Then P(m|s)=1.4?
• But that’s not possible!
• What is wrong here?
• 𝑃 𝑎 = ∑%𝑃(𝑎, 𝑏) //marginalization
• ∑%𝑃 𝑎 𝑏 𝑃(𝑏) //product rule

• 𝑃 𝑠 = 𝑃 𝑠 𝑚 𝑃 𝑚 + 𝑃 𝑠 ¬𝑚 𝑃(¬𝑚)
• 𝑃 𝑠 𝑚 and 𝑃 𝑚 affect the value of 𝑃 𝑠



Joint Distribution

• Assume we have n random variables that can take on d values
• If we are to store all of this in a table, we would need 𝑂(𝑑2) entries
• 𝑃(𝑋', 𝑋(, … , 𝑋))



Chain Rule

• Product	rule:	𝑃 𝑋1, 𝑋3 = 𝑃 𝑋1 𝑋3 𝑃 𝑋3 = 𝑃 𝑋3 𝑋1 𝑃 𝑋1
• 𝑃 𝑋1, 𝑋3, … , 𝑋2 = 𝑃 𝑋2 𝑋241, … , 𝑋1 𝑃(𝑋241, … , 𝑋1)
• = 𝑃 𝑋2 𝑋241, … , 𝑋1 𝑃 𝑋241 𝑋243, … , 𝑋1 𝑃(𝑋243, … , 𝑋1)
• = 𝑃 𝑋2 𝑋241, … , 𝑋1 𝑃 𝑋241 𝑋243, … , 𝑋1 …𝑃 𝑋3 𝑋1 𝑃(𝑋1)
• = ∏561

2 𝑃(𝑋5|𝑋541, … , 𝑋1)
• This is just one way to write the joint distribution as a product of conditional 

distributions
• As long as we follow the product rule, we can write this as a product of different 

conditional distributions



Joint Distribution w/ Chain Rule

• 𝑃 𝑋1, 𝑋3, … , 𝑋2 = ∏561
2 𝑃(𝑋5|𝑋541, … , 𝑋1)

• For each table we need ∏561
2 𝑑5 probabilities

• Still not less than 𝑂 𝑑)



Conditional Independence

• 𝑃 𝑋1, 𝑋3 𝑋7 = 𝑃 𝑋1 𝑋7 𝑃(𝑋3|𝑋7)
• If 𝑋1 and 𝑋3 and conditionally independent given 𝑋7, what about 𝑃 𝑋1 𝑋3, 𝑋7 ?
• 𝑃 𝑋1, 𝑋3 𝑋7 = 𝑃 𝑋1 𝑋3, 𝑋7 𝑃(𝑋3|𝑋7) //product rule
• 𝑃 𝑋1 𝑋7 𝑃(𝑋3|𝑋7) = 𝑃 𝑋1 𝑋3, 𝑋7 𝑃(𝑋3|𝑋7) //conditional independence
• 𝑃(𝑋1|𝑋7) = 𝑃 𝑋1 𝑋3, 𝑋7



Joint Distribution w/ Chain Rule and Conditional 
Independence

• 𝑃 𝑋!, 𝑋", … , 𝑋# = ∏$%!
# 𝑃(𝑋$|𝑋$&!, … , 𝑋!)

• We can reduce the size of the tables using conditional independence
• Suppose each variable is conditionally independent of all other variables it is 

conditioned on given, at most, 𝑟 variables
• 𝑃 𝑋!, 𝑋", … , 𝑋# = ∏$%!

# 𝑃(𝑋$|𝑉𝑎𝑟𝑠 𝑋$ )
• Where 𝑉𝑎𝑟𝑠 returns the (at most) r variables needed for 𝑋! to be conditionally independent of all 

other variables
• For each table, we would need ∏$%!

# 𝑑(()!) = 𝑛𝑑(()!)
• Number of entries we need grows linearly with the number of variables instead of 

exponentially
• If I have 100 variables that can take on 2 different values

• Need 2"## = 1.3×10$# probabilities
• However, if each variable can be conditionally independent from others given 3 

variables
• 100×2$%" = 1600



Bayesian Networks

• Bayesian networks give us a way of efficiently representing the full joint 
distribution using independence and conditional independence in the form of a 
graphical model
• Using Bayesian networks, we can also perform probabilistic inference in a 

manner that is efficient in many practical scenarios
• Because probabilistic inference can be computationally intractable in the worst 

case, we can use approximate inference algorithms when exact inference is 
infeasible



Bayesian Networks

• Directed acyclic graphical model
• Directed acyclic graph (DAG)

• Directed edges connect pairs of nodes
• If there is an arrow from X to Y, then X is said to be a parent of Y

• Nodes have a random variable 𝑋 and a probability table specifying 𝑃(𝑋|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋))
• 𝑃 𝑋!, 𝑋", … , 𝑋# = ∏$%!

# 𝑃(𝑋$|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑋$ )
• Key assumption: a random variable is conditionally independent of all of its non-descendents

given its parents



Bayesian Networks

• A variable X is conditionally 
independent of its non-descendents
(Zs) given its parents (Us)



Example: Plant Health Network

Blight Nutrients

Health

Yield Taste

P(B=+b)

0.1

P(N=+n)

0.95

B N P(H=+h|B,N)

+b +n 0.5

+b -n 0.05

-b +n 0.99

-b -n 0.6

H P(Y=+y|H)

+h 0.7

-h 0.1

*modified from AIMA

H P(T=+t|H)

+h 0.9

-h 0.05



Joint Distribution w/ Bayesian Networks

• Chain rule shows: 𝑃 𝑋1, 𝑋3, … , 𝑋2 = ∏561
2 𝑃(𝑋5|𝑋541, … , 𝑋1)

• Conditional independence shows: 𝑃 𝑋1, 𝑋3, … , 𝑋2 = ∏561
2 𝑃(𝑋5|𝑉𝑎𝑟𝑠 𝑋5 )

• Since Bayesian Networks encode conditional independence of all non-
descendents given their parents, we put nodes in topological order
• That is, any order consistent with the directed graph structure

• Since nodes are in topological order, they are only conditioned on their non-
descendents
• Therefore, 𝑃 𝑋1, 𝑋3, … , 𝑋2 = ∏561

2 𝑃(𝑋5|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑋5 )



Dentist Example
• Toothache
• Cavity
• Catch (dentist tool that catches in a 

hole in the teeth)
• Weather

Cavity

Toothache Catch

Weather

• 𝑃 𝑋!, 𝑋", … , 𝑋# = ∏$%!
# 𝑃(𝑋$|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑋$ )

• 𝑃(𝐶𝑎𝑣𝑖𝑡𝑦, 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒, 𝐶𝑎𝑡𝑐ℎ,𝑊𝑒𝑎𝑡ℎ𝑒𝑟)
• A topological order: Weather, Cavity, Catch, Toothache
• 𝑃(𝑊𝑒𝑎𝑡ℎ𝑒𝑟)𝑃 𝐶𝑎𝑣𝑖𝑡𝑦 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 𝑃 𝐶𝑎𝑡𝑐ℎ 𝑊𝑒𝑎𝑡ℎ𝑒𝑟, 𝐶𝑎𝑣𝑖𝑡𝑦 𝑃 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒|𝐶𝑎𝑡𝑐ℎ,𝑊𝑒𝑎𝑡ℎ𝑒𝑟, 𝐶𝑎𝑣𝑖𝑡𝑦
• 𝑃(𝑊𝑒𝑎𝑡ℎ𝑒𝑟)𝑃(𝐶𝑎𝑣𝑖𝑡𝑦)𝑃 𝐶𝑎𝑡𝑐ℎ 𝐶𝑎𝑣𝑖𝑡𝑦 𝑃 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒|𝐶𝑎𝑣𝑖𝑡𝑦
• Other node orders are possible as long as they are in topological order

• E.g. Cavity, weather, toothache, catch



Traffic Example

• Traffic
• Umbrella
• Raining

Raining

Traffic Umbrella



Traffic Example 2

• T: Traffic
• R: It rains
• L: Low pressure (in 

atmosphere not in sensor)
• D: Roof leaks
• B: Ballgame
• C: Cavity



Coin Flip Example

• Suppose you flip n coins

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn



Hospital Alarm Example

• 37 variables with 509 probabilities (instead of 27/ ≈ 1011)



Quick Quiz



Quick Quiz



Quick Quiz



Quick Quiz



Simple Traffic Example: Causal Direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Simple Traffic Example: Reverse Direction

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Causality
• When Bayesʼ nets reflect the true causal patterns:

• Often simpler (nodes have fewer parents)
• Often easier to think about
• Often easier to elicit from experts

• BNs need not actually be causal
• Sometimes no causal net exists over the domain 

(especially if variables are missing)
• End up with arrows that reflect correlation, not causation

• What do the arrows really mean?
• Topology may happen to encode causal structure
• Topology really encodes conditional independence



Summary

• 𝑃 𝑋1, 𝑋3, … , 𝑋2 = ∏561
2 𝑃(𝑋5|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑋5 )

• If, for each conditional probability table, we need ∏*+'
) 𝑑(,-') = 𝑛𝑑(,-')

• Number of entries we need grows linearly with the number of variables instead of 
exponentially

• Key assumption: a random variable is conditionally independent of all of its 
non-descendents given its parents


