

CSCE 774 ROBOTIC SYSTEMS

Background Fall 2023

Ioannis Rekleitis

Components

Position Representation

• Position representation

Orientation Representations

LB

 Describes the rotation of one coordinate system with respect to another

XB

Rotation Matrix

- Write the unit vectors of *B* in the coordinate system of *A*.
- Rotation Matrix: ${}^{A}_{B}R = \begin{bmatrix} {}^{A}\hat{X}_{B} & {}^{A}\hat{Y}_{B} & {}^{A}\hat{Z}_{B} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} B$

AXR

ĽΑ

Coordinate System Transformation

$$M = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_x \\ r_{21} & r_{22} & r_{23} & p_y \\ r_{31} & r_{32} & r_{33} & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} R & T \\ 0_{3 \times 1} & 1 \end{bmatrix}$$

where *R* is the rotation matrix and *T* is the translation vector

Rotation Matrix

• The rotation matrix consists of 9 variables, but there are many constraints. The minimum number of variables needed to describe a rotation is three.

• **ZYX**: Starting with the two frames aligned, first rotate about the Z_B axis, then by the Y_B axis and then by the X_B axis. The results are the same as with using XYZ fixed angle rotation.

• There are 12 different combination of Euler Angle representations

Pitch

Yaw

Euler Angle concerns: Gimbal Lock

Using the **ZYZ** convention •(90°, 45°, −105°) ≡ (−270°, −315°, 255°) •(72°, 0°, 0°) ≡ (40°, 0°, 32°) • (45°, 60°, −30°) ≡ (−135°, −60°, 150°)

multiples of 360° singular alignment (Gimbal lock) bistable flip

Axis-Angle Representation

• Represent an arbitrary rotation as a combination of a vector and an angle

Quaternions

- Are similar to axis-angle representation
- Two formulations
 - Classical
 - Based on JPL's standards

W. G. Breckenridge, "Quaternions - Proposed Standard Conventions," JPL, Tech. Rep. INTEROFFICE MEMORANDUM IOM 343-79-1199, 1999.

- Avoids Gimbal lock
- See also: M. D. Shuster, "A survey of attitude representations," Journal of the Astronautical Sciences, vol. 41, no. 4, pp. 439–517, Oct.–Dec. 1993.

- Sensors are devices that can sense and measure physical properties of the environment,
 - e.g. temperature, luminance, resistance to touch, weight, size, etc.
 - The key phenomenon is transduction
 - Transduction (engineering) is a process that converts one type of energy to another
- They deliver *low-level* information about the environment the robot is working in.
 - Return an incomplete description of the world.

Robot Sensors

- This information is **noisy** (imprecise).
- Cannot be modelled completely:
 - Reading = f(env) where f is the model of the sensor
 - Finding the inverse:
 - ill posed problem (solution not uniquely defined)
 - collapsing of dimensionality leads to ambiguity

Types of sensor

- General classification:
 - -active versus passive
 - Active: emit energy in environment
 - More robust, less efficient
 - Passive: passively receive energy from env.
 - Less intrusive, but depends on env. e.g. light for camera
 - Example: stereo vision versus range finder.
 - contact versus non-contact

Sensors

• **Proprioceptive Sensors** (monitor state of robot)

- IMU (accels & gyros)
- Wheel encoders
- Doppler radar ...

Exteroceptive Sensors

(monitor environment)

- Cameras (single, stereo, omni, FLIR ...)
- Laser scanner
- MW radar
- Sonar
- Tactile…

Sensor Characteristics

- All sensors are characterized by various properties that describe their capabilities
 - -Sensitivity:

(change of output) ÷ (change of input)

- –Linearity: constancy of (output ÷ input)
 - Exception: logarithmic response cameras == wider dynamic range.
- Measurement/Dynamic range: difference between min. and max.

Sensor Characteristics

- Response Time: time required for a change in input to cause a change in the output
- –Accuracy: difference between measured & actual
- Repeatability: difference between repeated measures
- **Resolution**: smallest observable increment
 Bandwidth: result of high resolution or cycle time

- IMU
- Wheel Encoders
- Compass
- Monocular Vision
- Stereo Vision
- RGBd (Kinnect)
- LIDAR

IMU's

- Gyro, accelerometer combination.
- Typical designs (e.g. 3DM-GX1[™]) use tri-axial gyros to track dynamic orientation and tri-axial DC accelerometers along with the tri-axial magnetometers to track static orientation.
- The embedded microprocessors contains programmable filter algorithms, which blend these static and dynamic responses in real-time.

Why vision?

- Passive (emits nothing).
 - Discreet.
 - Energy efficient.
- Intuitive.
- Powerful (works well for us, right?)
- Long and short range.
- Fast.

So, what's the problem?

• How hard is vision? Why do we think is do-able?

Problems:

- Slow.
- Data-heavy.
- Impossible.
- Mixes up many factors.

The "Vision Problem"

The vision problem in general...

- In trying to extract 3d structure from 2d images, vision is an *ill-posed* problem.
- Basically, there are too many possible worlds that might (in theory) give rise to a particular image

Ill-posed

• In trying to extract 3d structure from 2d images, vision is an *ill-posed* problem.

Ill-posed

• In trying to extract 3d structure from 2d images, vision is an *ill-posed* problem.

 An image isn't enough to disambiguate the many possible 3d worlds that could have produced it.

Camera Geometry

$3D \rightarrow 2D$ transformation: perspective projection

Coordinate Systems

Coordinate Systems

From 3d to 2d

Camera Calibration

- Camera Model
 - [*u v 1*] Pixel coords
 - $\begin{bmatrix} x_w & y_w & z_w & 1 \end{bmatrix}^T$ World coords
- Intrinsic Parameters
 - $\alpha_x = f \cdot m_x, \alpha_y = f \cdot m_y$ focal lengths in pixels - γ skew coefficient
 - u_0, v_o focal point
- Extrinsic Parameters
 - $-\begin{bmatrix} R & T \end{bmatrix}$ Rotation and Translation

$$z_{c}\begin{bmatrix} u\\v\\1\end{bmatrix} = A\begin{bmatrix} R & T\end{bmatrix}\begin{bmatrix} x_{w}\\y_{w}\\z_{w}\\1\end{bmatrix}$$

$$A = \begin{bmatrix} \alpha_x & \gamma & u_0 \\ 0 & \alpha_y & v_o \\ 0 & 0 & 1 \end{bmatrix}$$

Camera Calibration

Existing packages in MATLAB, OpenCV, etc

Correspondence Problem

Correspondence

From I_1

From I₂

Stereo Vision: Pinhole Camera

Stereo Vision: Pinhole Camera

Stereo Vision: Pinhole Camera

Stereo Vision: Pinhole

Stereo Vision: Pinhole

Large Baseline

Stereo: Disparity Map

Using real-time stereo vision for mobile robot navigation

Don Murray

Jim Little

Computer Science Dept. University of British Columbia Vancouver, BC, Canada V6T 1Z4

Another Example (Hole Filling)

Cloth Parameters and Motion Capture by David Pritchard B.A.Sc., University of Waterloo, 2001

Depth Map in a City

Good Feature

- High Recall
- Good Precision
- Feature Detection
- Feature Matching
- Several Alternatives:
 - Harris Corners (OpenCV)
 - SURF (OpenCV)
 - SIFT
 - etc

