

UNIVERSITY OF SOUTH CAROLINA

CSCE 774 ROBOTIC SYSTEMS

Introduction Fall 2023

Ioannis Rekleitis

Present Everywhere

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines •
- In Hospitals
- Education

Autonomous Field Robotics Lab

Research Philosophy

- Develop algorithms for robotic applications
- Deploy algorithms on fielded robots

(Aerial, ground, surface, and/or underwater)

- > Simulations are an important first step
- <u>Evaluating the performance of the deployed</u> robots is crucial

Three major challenges in robotics:

- Localization
- Mapping
 - SLAM: Simultaneous Localization and Mapping
- Path/Trajectory Planning

Robotic technology becomes affordable

TurtleBot 2

AR.DRONE

Kinect

Raspberry Pi 4

CSCE 774: Robotic Systems

Jetson Xavier

Past Projects

Complete Optimal Terrain Coverage using an Unmanned Aerial Vehicle

Anqi Xu Chatavut Viriyasuthee Ioannis Rekleitis

St McGill

Instructing Aqua with tags

- NSF CRI II-New: Acquisition of a Heterogeneous Team of Field Robots for Coastal Environments
 2 Aqua u/w vehicles
- **PI**: I. Rekleitis
- CoPIs: J. Beer, J. O'Kane
- 2015-2018

Several Surface Vehicles

2 fixed wings 2 quadrotor Aerial Vehicles

- SC Floods Research Initiative: Rapid Assessment of Bridge Scouring and Recovery Following Extreme Flood Events. PI: G. Voulgaris

- **Google Faculty Research Awards**: Underwater Street View: Wreck Mapping off the Carolinas
- PI: I. Rekleitis
- 2016-2017

- NSF NRI: Enhancing Mapping Capabilities of Underwater Caves using Robotic Assistive Technology
- PI: I. Rekleitis
- 2016-2019

CSCE Stereo Based 3D Reconstruction

NSF Early Career Award

Enabling Autonomy via Enhanced Situational Awareness for Underwater Robotics

- Single PI: I. Rekleitis
- **Period**: 2020-2025

NSF National Robotics Initiative (NRI 2.0)

Cooperative Underwater Structure Inspection and Mapping

- **PI**: I. Rekleitis
- CoPIs: S. Nelakuditi, A. Quattrini Li, J. Casana, P. Mordohai
- **Period**: 2020-2024

NSF EPSCOR RII Track-2 FEC

<u>Computational methods and autonomous robotics systems for</u> <u>modeling and predicting harmful cyanobacterial blooms</u>

- **PI**: A. Quattrini Li
- **CoPIs**: H. Ewing, P. Stegagno, **I. Rekleitis**, A. Bourbonnais
- **Period**: 2019-2023

Current work in U/W Robotics

Mapping a Shipwreck (Barbados)

Dr. Nare Karapetyan (currently at University of Maryland, College Park) mapping a wreck

Representations: Sparse

JWIECK

Representations: Dense (Cavern)

Offline (Colmap)

Online

W. Wang, B. Joshi, N. Burgdorfer, K. Batsos, A. Quattrini Li, P. Mordohai, and I. Rekleitis. "Real-Time Dense 3D Mapping of Underwater Environments". ICRA, 2023.

GoPro: Inexpensive Visual/Inertial Sensor

Cueva del Agua | Murcia | Spain Start-of-Line to T1 to T2

Mapping the guideline inside an Underwater Cave

Weakly Supervised Caveline Detection For AUV Navigation Inside Underwater Caves

Boxiao Yu, Reagan Tibbetts, Titon Barua, Ailani Morales, Ioannis Rekleitis and Md Jahidul Islam

Exploration: where to next?

Existing Robotic Platforms

Existing Robotic Platforms

Three Main Challenges in Robotics

- 1. Where am I? (Localization)
- 2. What the world looks like? (Mapping)
 - Together 1 and 2 form the problem of *Simultaneous Localization and Mapping* (SLAM)
- 3. How do I go from A to B? (Path Planning)
 - More general: Which action should I pick next? (Planning)

Robot

- Focus on Localization, Mapping, and SLAM
- Focus on Visual and Inertial Sensors
- Reading and discussing different research papers
- Presentations by students
- Hands on assignments

Evaluation

- 3 Homeworks, 10% each: 30%
 - 1. ROS project
 - 2. Bibliography Search
 - 3. Vision based state estimation
- Final Project: 20%
- Class Participation: 20%
 - Prepare a small report on each paper/topic

30%

Presentations:

Homeworks/Projects

- Using ROS2 and OpenCV
- Using Simulations
- Using sensor data from real robots
- Using real robots (TurtleBot)

Contact

- <u>http://www.cse.sc.edu/~yiannisr/</u>
- <u>http://www.cse.sc.edu/~yiannisr/774/2023</u>

- Email: <u>yiannisr@cse.sc.edu</u>
- **Office hours**: Storey Innovation Center 2235 -- by appointment

Class Interests

<u>Please email me with a two/three paragraphs</u> <u>talking about:</u>

- Introduction
- Background
- Interests
- Projects
- Reasons
- Expectations