

CSCE 774 ROBOTIC SYSTEMS

Computer Vision

Slides courtesy of Professor Gregory Dudek and Professor Alberto Quattrini Li

Ioannis Rekleitis

Why vision?

- Passive (emits nothing).
 - Discreet.
 - Energy efficient.
- Intuitive.
- Powerful (works well for us, right?)
- Long and short range.
- Fast.

So, what's the problem?

• How hard is vision? Why do we think is do-able?

Problems:

- Slow.
- Data-heavy.
- Impossible.
- Mixes up many factors.

Data heavy

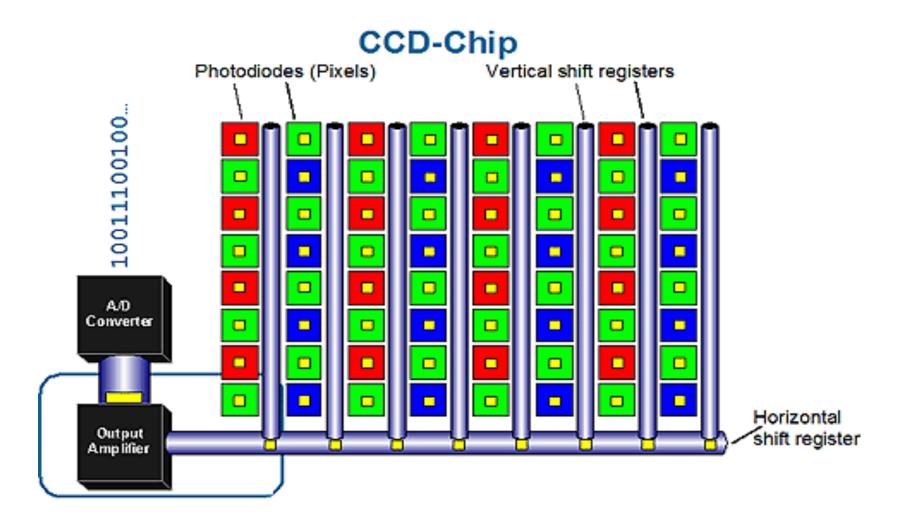
1080		$\begin{bmatrix} 43\\42\\\vdots\\54 \end{bmatrix}$	$\begin{array}{cccc} 43 & 42 \\ 41 & 40 \\ \vdots & \vdots \\ 57 & 60 \\ \end{array}$) 39		· · · · · · · ·	31	32 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	R
1080	$\begin{bmatrix} 129\\128\\\vdots\\146 \end{bmatrix}$	129 128 : 146	129 127 : 148	129 128 : 148	128 127 : 148	· · · · · · · ·	$149 \\ 151 \\ \vdots \\ 149$	$149 \\ 152 \\ \vdots \\ 150$	$151 \\ 155 \\ \vdots \\ 151$	$egin{array}{c} 153 \ 157 \ dots \ 152 \ 152 \ \end{bmatrix}$	G
1080	$\begin{bmatrix} 146\\ 145\\ \vdots\\ 159 \end{bmatrix}$	$146 \\ 145 \\ \vdots \\ 160$	144 :	$145 \\ 144 \\ \vdots \\ 161$	145	· · · · · · ·		166 169 : 166	168 172 : 165	$170 \\ 174 \\ \vdots \\ 166$	

From GoPro HERO3+ at Barbados 2015 Field Trials

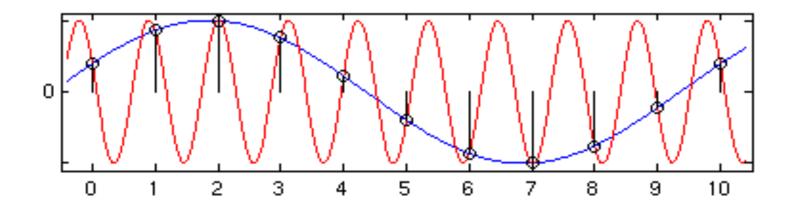
Aliasing

- Images are not actually continuous.
- The sampling (and hardware) issues lead to a few other minor problems.

Aliasing



Aliasing



• To avoid: $f_{sampling} > 2F_{max}$ - Nyquist Rate

Aliasing: Moiré Patterns



8

• What a camera does to the 3d world...

Shigeo Fukuda

squeezes away one dimension

http://www.psychologie.tu-dresden.de/i1/kaw/diverses Material/www.illusionworks.com/html/art_of_shigeo_fukuda.html

• What a camera does to the 3d world...

Shigeo Fukuda

 $\underline{http://www.psychologie.tu-dresden.de/i1/kaw/diverses} \ {\tt Material/www.illusionworks.com/html/art_of_shigeo_fukuda.html} \\ \underline{http://www.psychologie.tu-dresden.de/i1/kaw/diverses} \ {\tt Material/www.illusionworks.com/html/art_of_shigeo_fukuda.html} \\ \underline{http://www.psychologie.tu-dresden.de/in/kaw/diverses} \ {\tt Material/www.illusionworks.com/html/art_of_shigeo_fukuda.html} \ {\tt Material/www.illusionworks.com/html/art_of_shigeo_fukuda.html}$

• In trying to extract 3d structure from 2d images, vision is an *ill-posed* problem.

• In trying to extract 3d structure from 2d images, vision is an *ill-posed* problem.

• In trying to extract 3d structure from 2d images, vision is an *ill-posed* problem.

 An image isn't enough to disambiguate the many possible 3d worlds that could have produced it.

Difficult scenarios

- In certain settings, such as the underwater, robotic vision is particularly challenging
 - Different lighting conditions
 - Color loss
 - Hazing and blur
 - Texture loss

What does a robot need ?

doesn't need a full interpretation of available images

"This is Prof. X in his office offering me a cup of iced tea."

does need information about what to do...

"Run Away!!"

reactive

•avoiding obstacles (or predators)

- •pursuing objects
- localizing itself
- •Mapping
- •finding targets

•reasoning about the world ..._

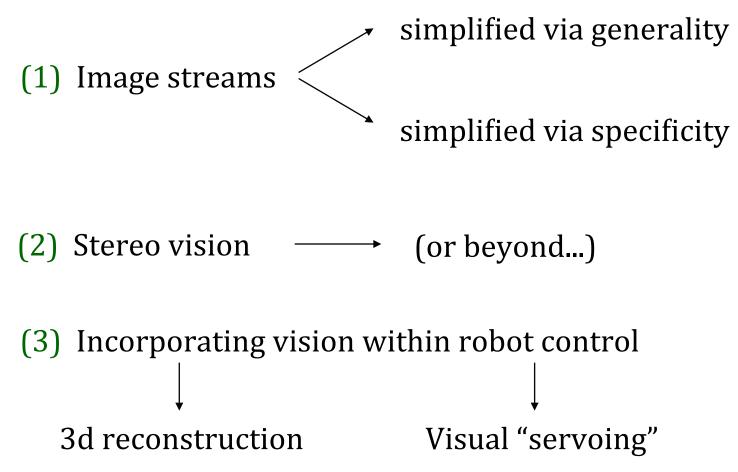
environmental interactions

- Recognition:
 - What is that thing in the picture?
 - What are all the things in the image?
- Scene interpretation
 - Describe the image?
- Scene "reconstruction":
 - What is the 3-dimensional layout of the scene?
 - What are the physical parameters that gave rise to the image?
 - What is a description of the scene?

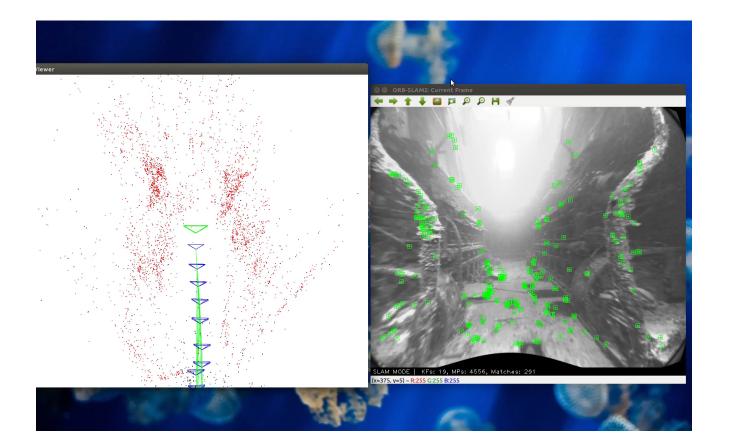
Notion of an "inverse problem."

Robot vision sampler

A brief overview of robotic vision processing...



3d reconstruction



Visual Servoing

Computer vision algorithms

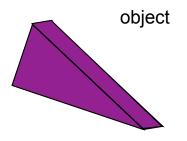
- Image processing
- Geometric computer vision
- Semantic computer vision

• It is fundamental first to understand image formation

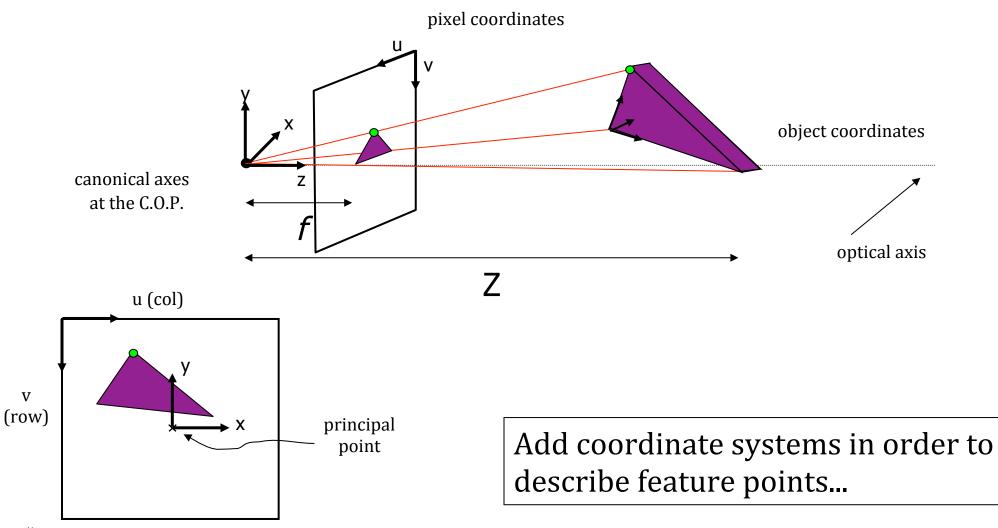
Camera Geometry

$3D \rightarrow 2D$ transformation: perspective projection

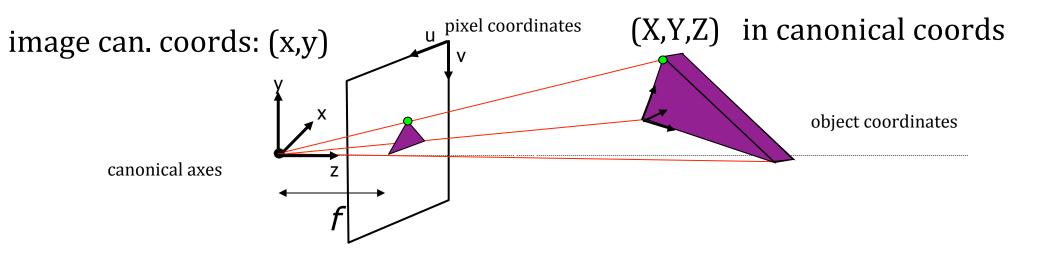




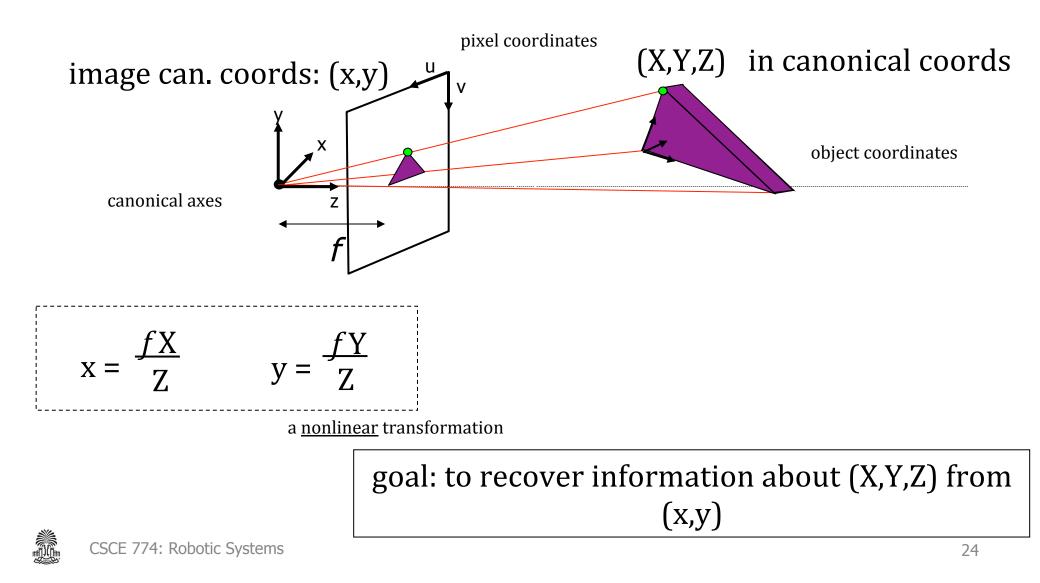
Coordinate Systems



Coordinate Systems



From 3d to 2d



Camera Calibration

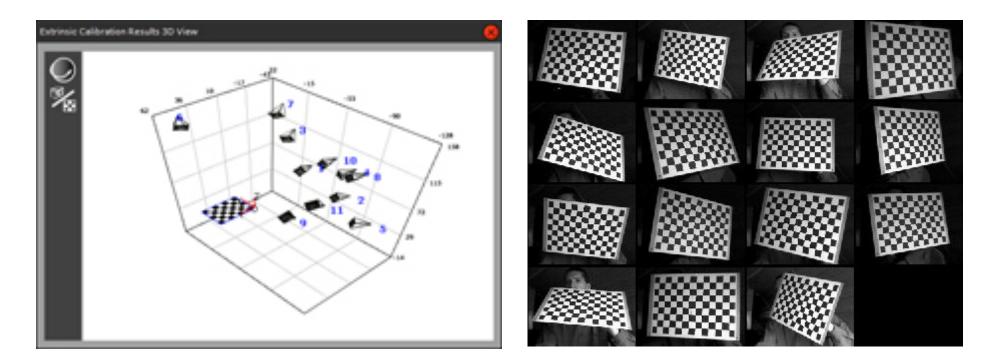
- Camera Model
 - -[u v 1] Pixel coords
 - $-\begin{bmatrix} x_w & y_w & z_w \end{bmatrix}^T$ World coords

$$z_{c} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = A \begin{bmatrix} R & T \end{bmatrix} \begin{bmatrix} x_{w} \\ y_{w} \\ z_{w} \\ 1 \end{bmatrix}$$

- Intrinsic Parameters
 - $-\alpha_x = f \cdot m_x, \alpha_y = f \cdot m_y \text{ focal lengths in pixels}$
 - $-\gamma$ skew coefficient
 - u_0, v_o focal point
- Extrinsic Parameters
 - $-\begin{bmatrix} R & T \end{bmatrix}$ Rotation and Translation

 $A = \begin{bmatrix} \alpha_x & \gamma & u_0 \\ 0 & \alpha_y & v_o \\ 0 & 0 & 1 \end{bmatrix}$

Camera Calibration



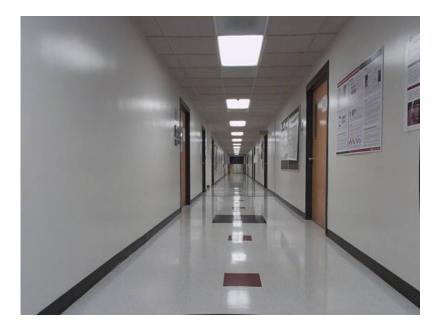
Existing packages in MATLAB, OpenCV, etc

Rectified Image Sample

Unrectified

Rectified

From Clearpath Husky Axis M1013 camera



Rectified Image Sample

Unrectified

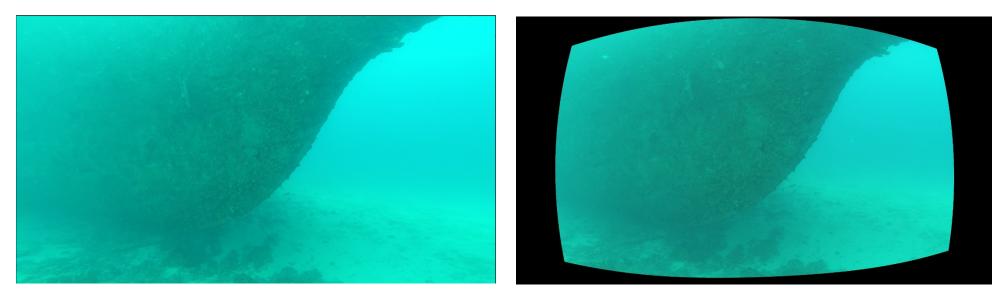
Rectified

From Parrot ARDrone 2.0 front camera

Rectified Image Sample

Unrectified

Rectified



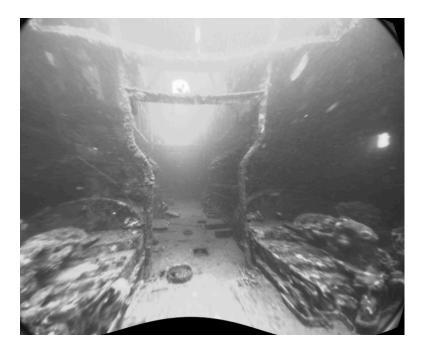
From GoPro HERO3+ at Barbados 2015 Field Trials

ReRectified Image Sample

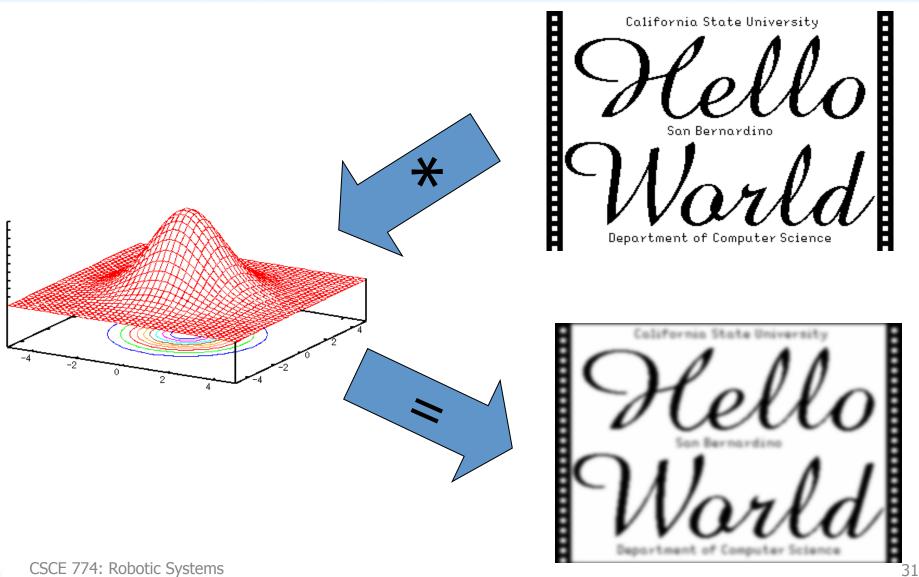
Rectified

ReRectified

From Aqua front camera at Barbados 2013 Field Trials



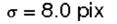
Gaussian Blur



Gaussian Blur and Noise



 $\sigma = 4.0 \text{ pix}$



 $\sigma = 12.0 \text{ pix}$

D.

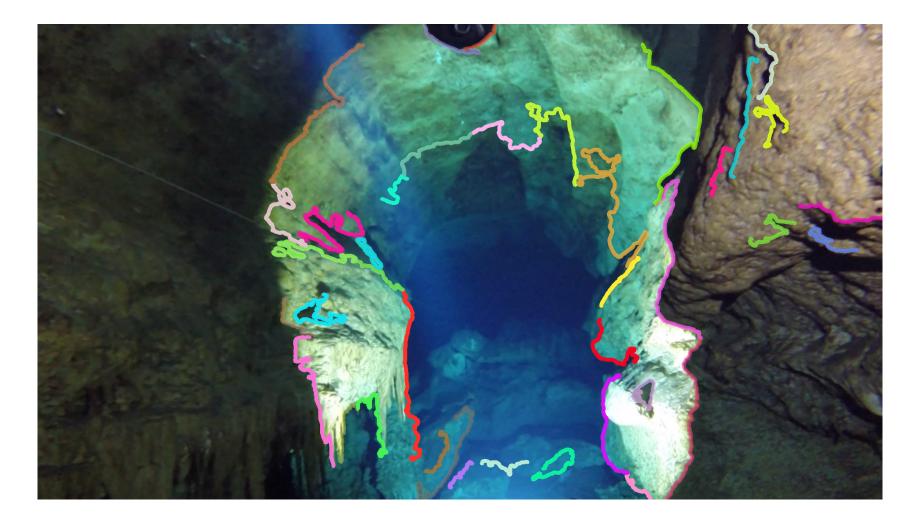
Gaussian Blur, Noise, Sobel

 $\sigma = 0.0 \text{ pix}$ $\sigma = 4.0 \text{ pix}$ $\sigma = 8.0 \text{ pix}$ $\sigma = 0.0 \text{ pix}$ $\sigma = 4.0 \text{ pix}$ $\sigma = 8.0 \text{ pix}$

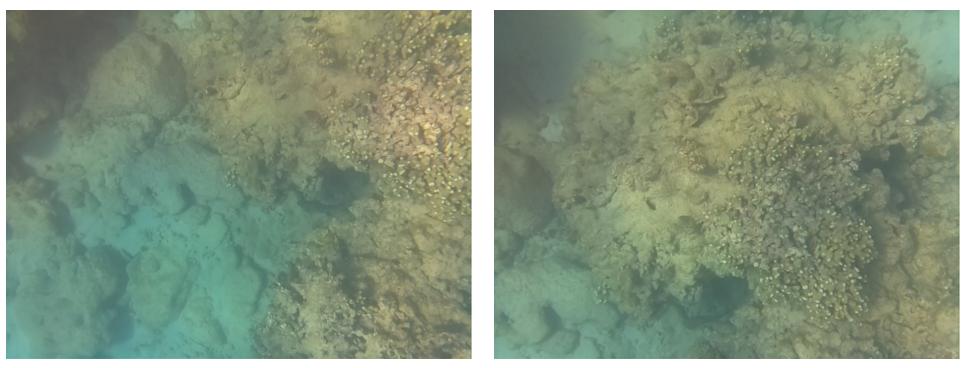
Image Downsampling

Thresholded image

Edge detection

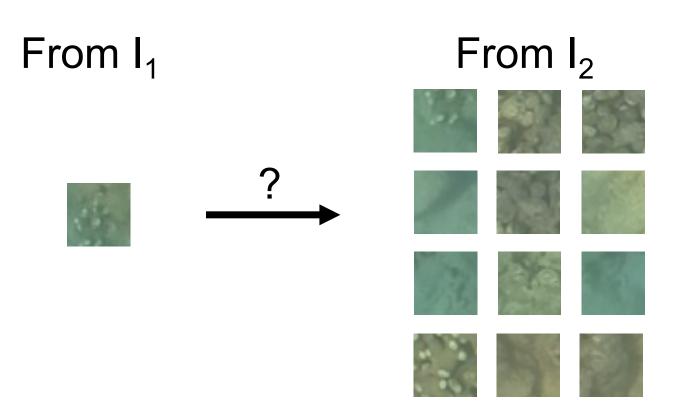


Correspondence Problem

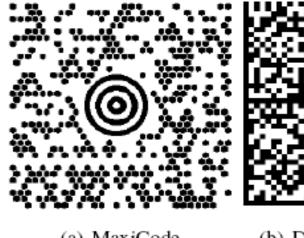


From Raspberry PI camera at Barbados 2016 Field Trials

Correspondence

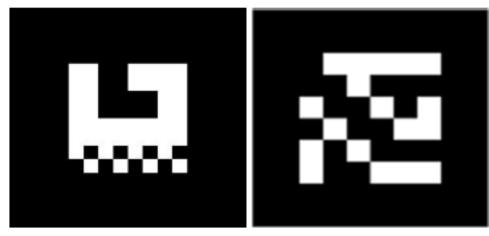


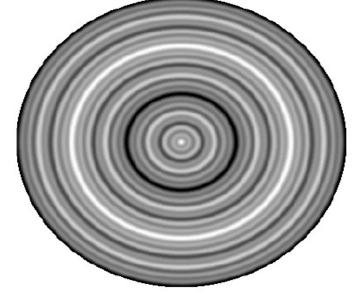
Fiduciary Markers/Fiducial



(a) MaxiCode

(b) DataMatrixSymbol

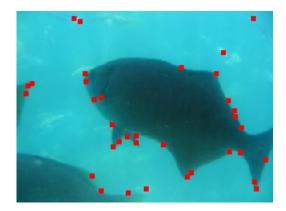




Fourier Tag

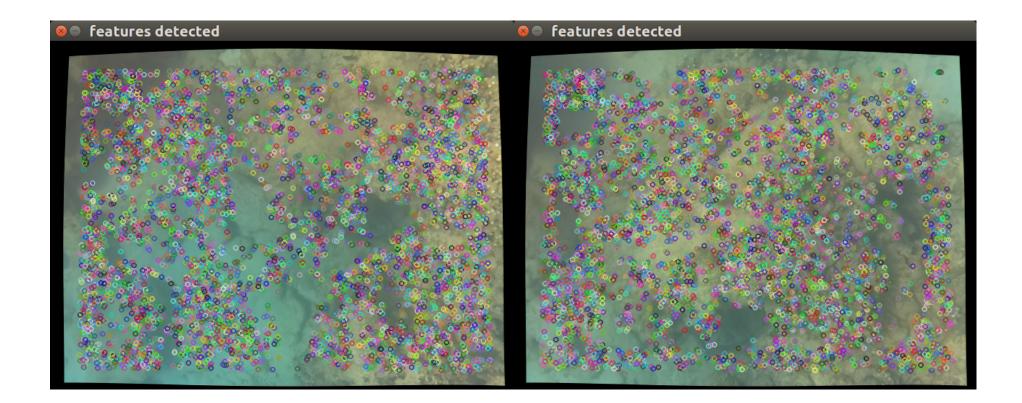
- Invariant to transformations
- Unique
- Efficient to compute
- Good precision and high recall
- Several Alternatives:
 - Harris Corners (OpenCV)
 - SURF (OpenCV)
 - SIFT
 - ORB
 - etc

Harris Corners

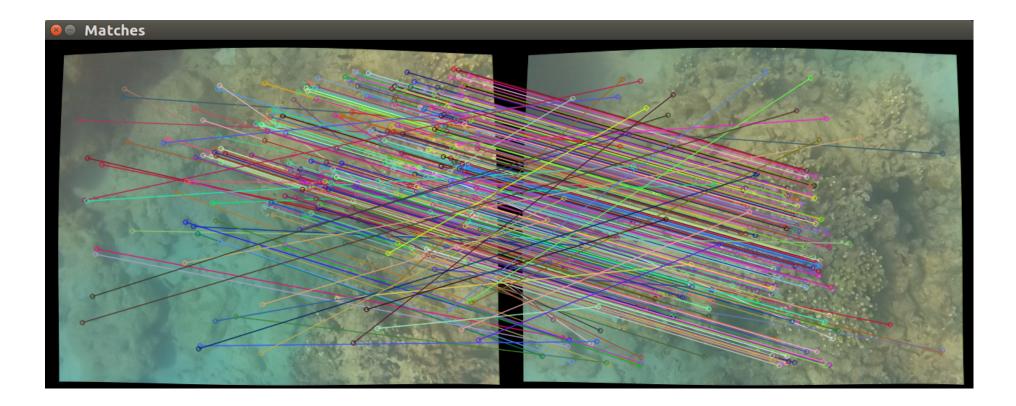




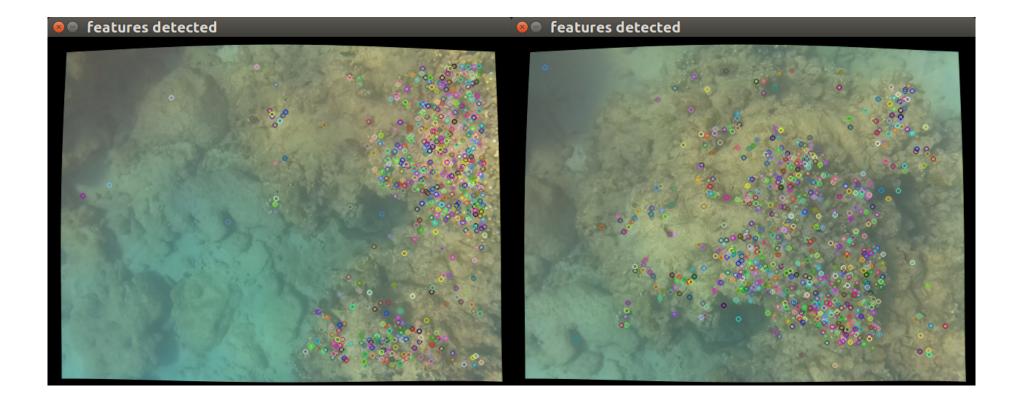
Harris Corners



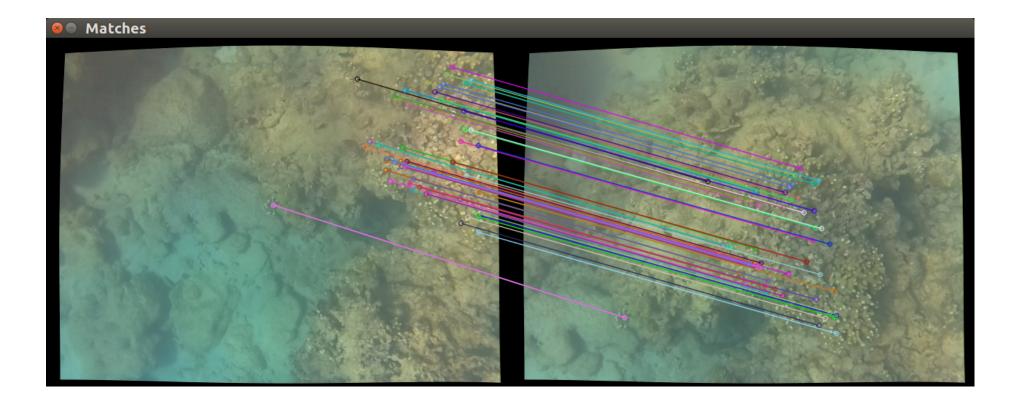
Harris Corners



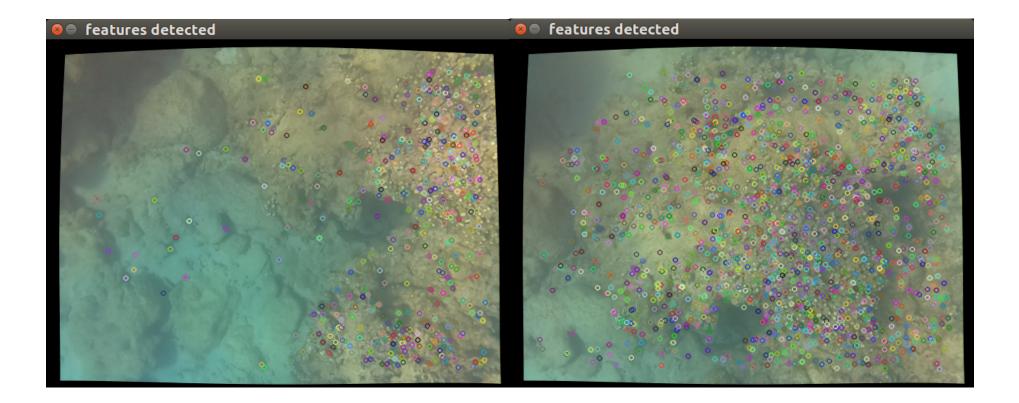
SIFT



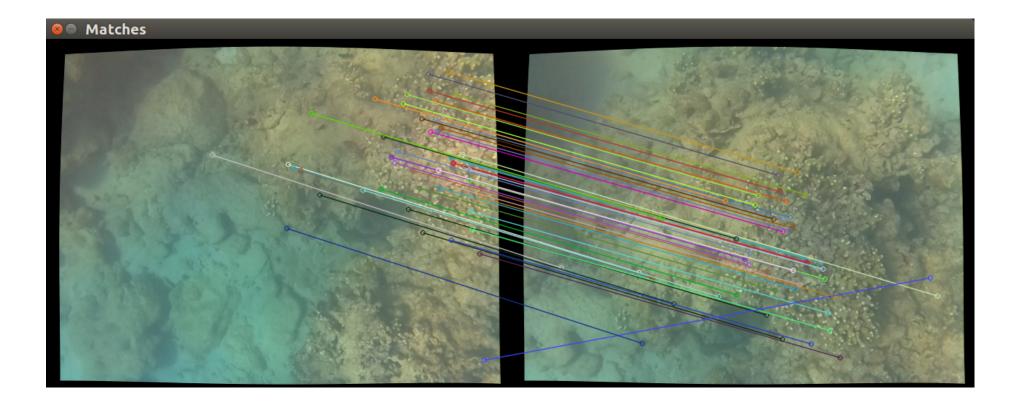
SIFT



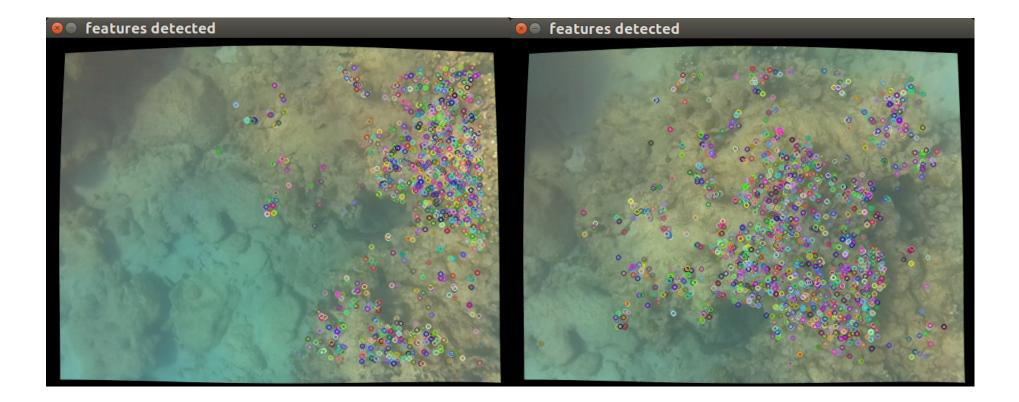
SURF



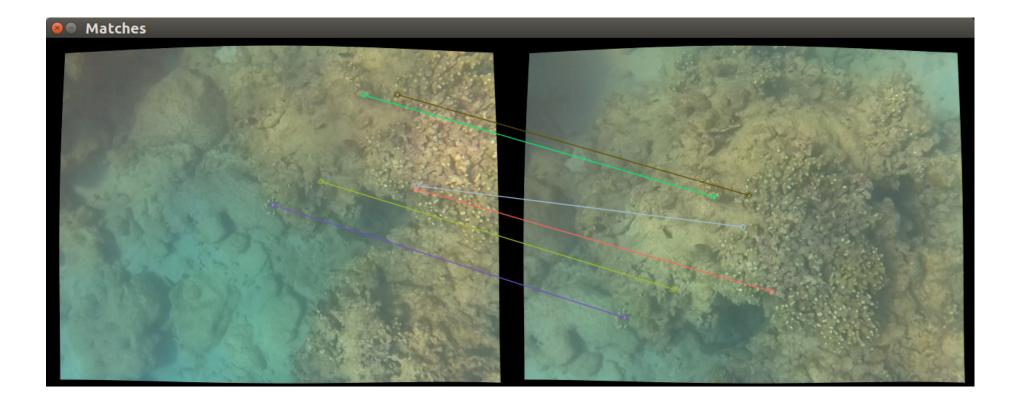
SURF



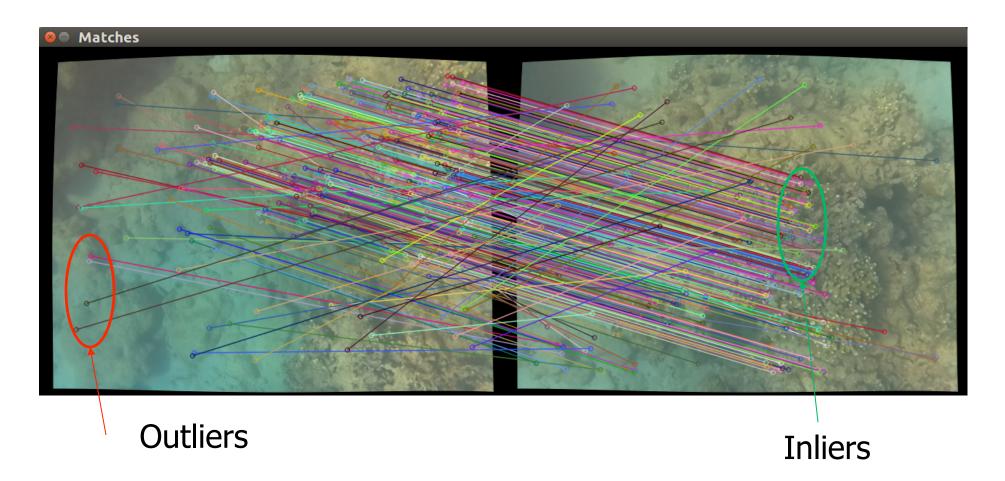
ORB



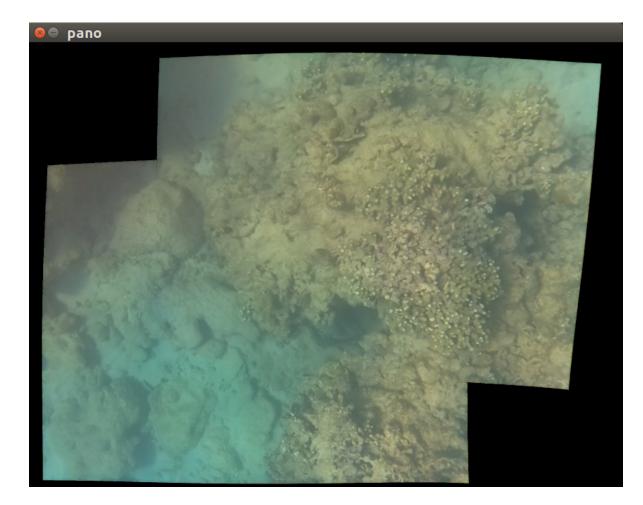
ORB



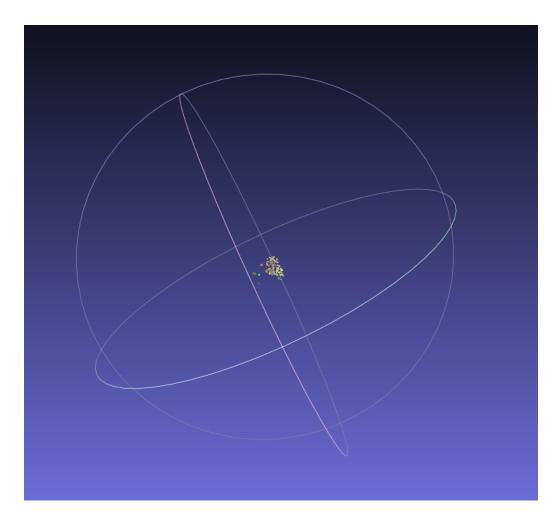
Outliers



Mosaic



3D Sparse reconstruction



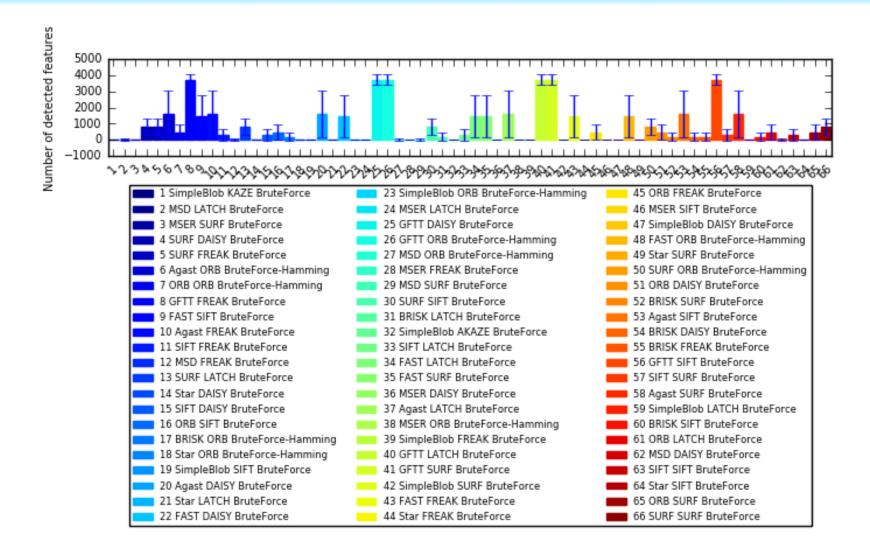
3D Sparse reconstruction

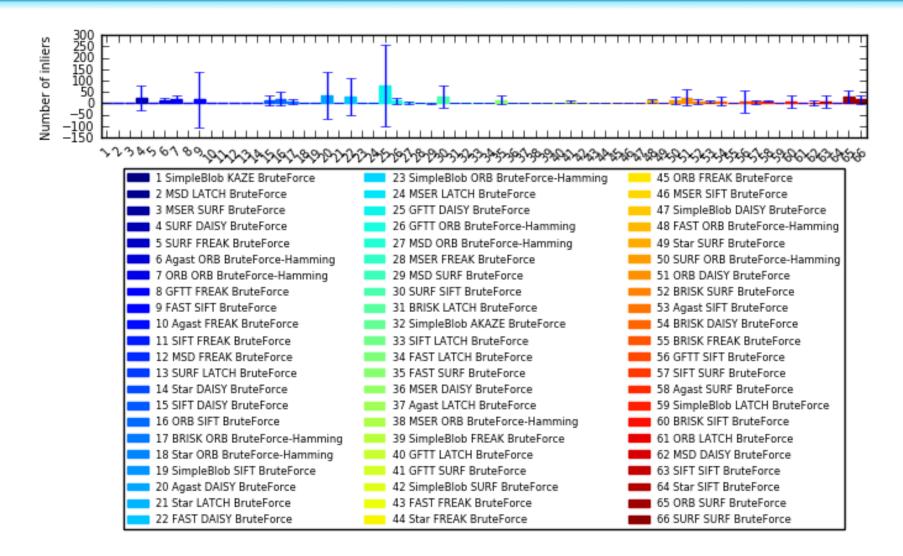
Source: https://grail.cs.washington.edu/rome/

Internet Photos ("Colosseum")

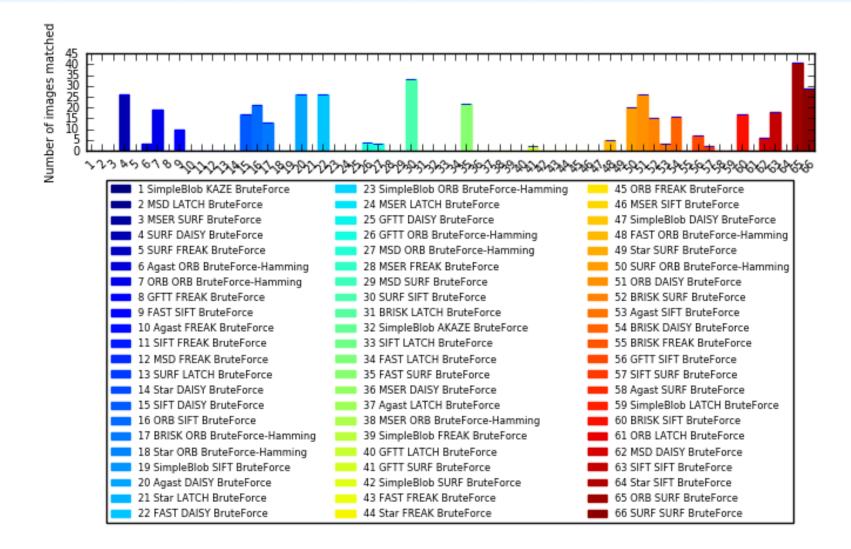
Reconstructed 3D cameras and points

Feature quality

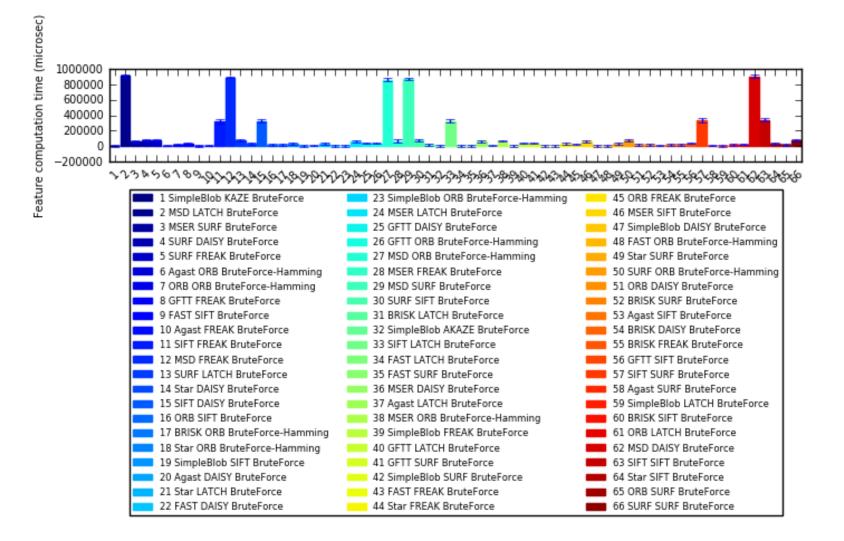




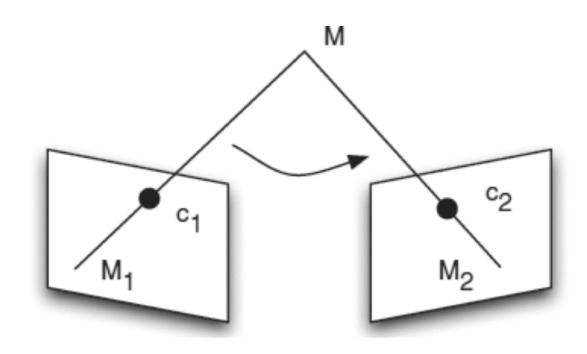
Feature quality



Feature quality



Egomotion

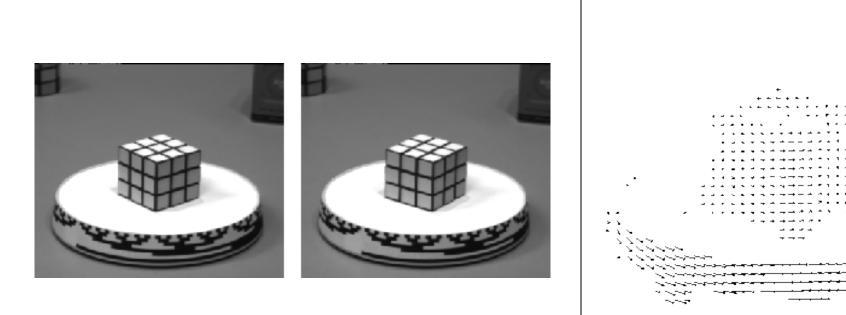


$C_1 M_1 (T \times R C_2 M_2) = 0$

Visual Odometry/Structure from Motion

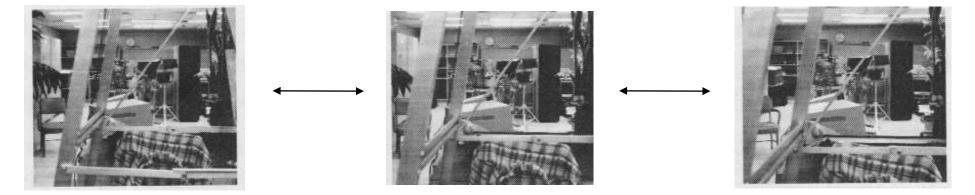
- Definition:
 - the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer (an eye or a camera) and the scene.

Optical Flow Field



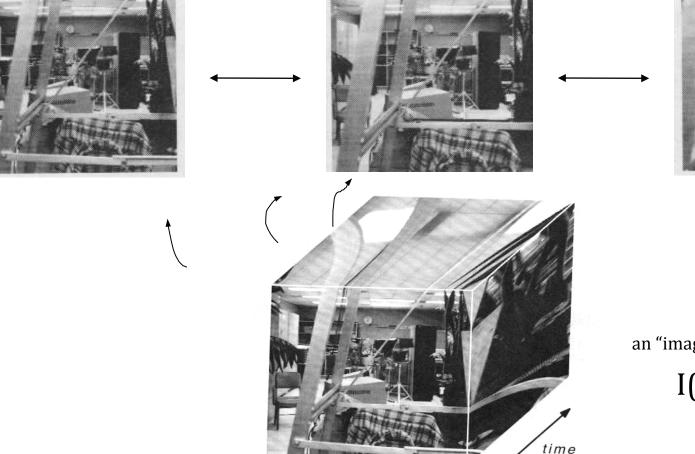
Information about *image motion* rather than the *scene*. *This is a classic* **reconstruction** *problem*.

This next step might be to use the image motion to infer scene motion, robot motion or 3D layout.



time sequence of images

Information about scene motion rather than the scene.

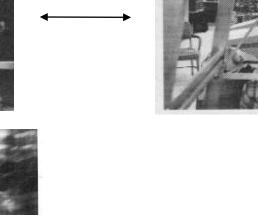


an "image cube"

I(x,y,t)

Information about scene motion rather than the scene.



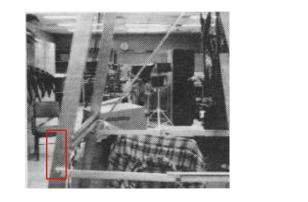


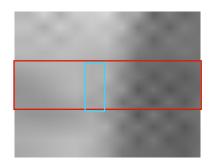
optical flow

How?

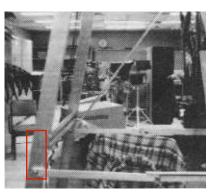
CSCE 774: Robotic Systems

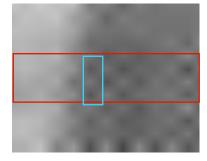
• By measuring the direction that intensities are moving... I(x,y,t)





99	90	90	70	40
95	90	70	40	40
90	90	70	40	40
90	90	70	40	40
90	70	50	40	30
	95 90 90	959090909090	95 90 70 90 90 70 90 90 70 90 90 70	99909070959070409090704090705040

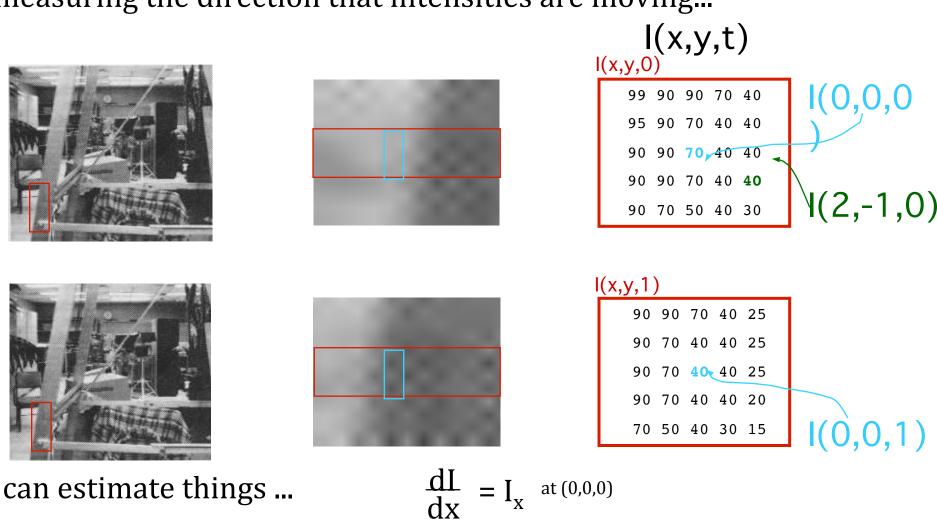




9(90	70	40	25	
90	070	40	40	25	
9(070	40	40	25	
90	070	40	40	20	
7(50	40	30	15	

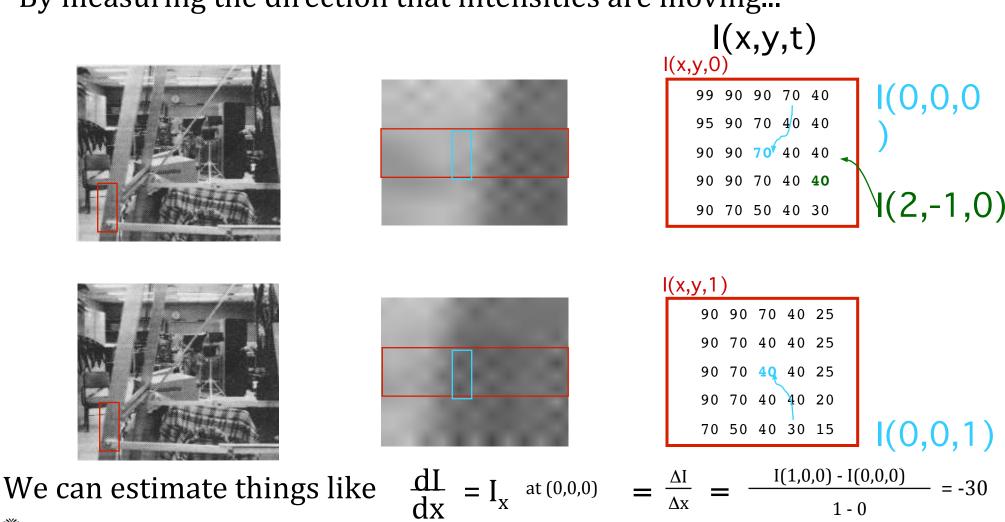
• We can estimate things...

By measuring the direction that intensities are moving...



We can estimate things ...

By measuring the direction that intensities are moving...



CSCE 774: Robotic Systems

By measuring the direction that intensities are moving...

	I(x,y,t)				
I		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l(0,0,0)		
		90 90 70 ⁴ 40 40 90 90 70 40 40 90 70 50 40 30	¥(2,-1,0)		
	I(x,y,1)			
		90 90 70 40 25 90 70 40 40 25 90 70 40 40 25			
		90 70 40 40 20 70 50 40 30 15	I(0,0,1)		
TEX STREET, OPP.					

 $\frac{dI}{dx} = I_x \quad \frac{dI}{dy} = I_y \quad \frac{dI}{dt} = I_t$

SO....

68

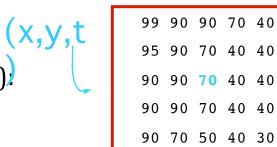
We can estimate things like

CSCE 774: Robotic Systems

Let I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint)

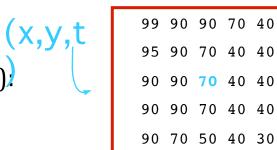
$$I(x,y,t) = I(x + dx, y + dy, t + dt)$$



Let I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint)

$$I(x,y,t) = I(x + dx, y + dy, t + dt)$$

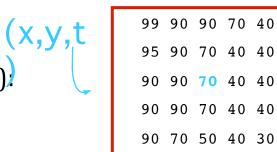


Reminder: $f(x + dx) = f(x) + f'(x) dx + f''(x) dx^2/2 + ...$

Let I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint)

$$I(x,y,t) = I(x + dx, y + dy, t + dt)$$



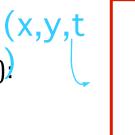
Reminder: $f(x + dx) = f(x) + f'(x) dx + f''(x) dx^2/2 + ...$

 $I(x,y,t) = I(x,y,t) + I_x dx + I_y dy + I_t dt + 2nd deriv. + higher$

Let I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint)

$$I(x,y,t) = I(x + dx, y + dy, t + dt)$$



99909070409590704040909070404090907040409070504030

Reminder: $f(x + dx) = f(x) + f'(x) dx + f''(x) dx^2/2 + ...$

 $I(x,y,t) = I(x,y,t) + I_x dx + I_y dy + I_t dt + 2nd deriv. + higher$

 $0 = I_x dx + I_y dy + I_t dt$

ignore these terms

Measuring Optical Flow

Let I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint)

$$I(x,y,t) = I(x + dx, y + dy, t + dt)$$

 $f(x + dx) = f(x) + f'(x) dx + f''(x) dx^2/2 + ...$ Reminder:

$$I(x,y,t) = I(x,y,t) + I_x dx + I_y dy + I_t dt + 2nd deriv. + higher$$

$$0 = I_x dx + I_y dy + I_t dt$$

$$-I_t = I_x \frac{dx}{dt} + I_y \frac{dy}{dt}$$

intensity-flow equation

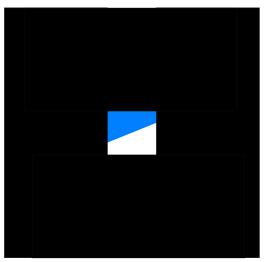
good and bad...

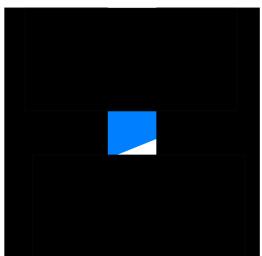
90 70 40 40

The "aperture" problem

$$-I_{t} = I_{x} \frac{dx}{dt} + I_{y} \frac{dy}{dt}$$

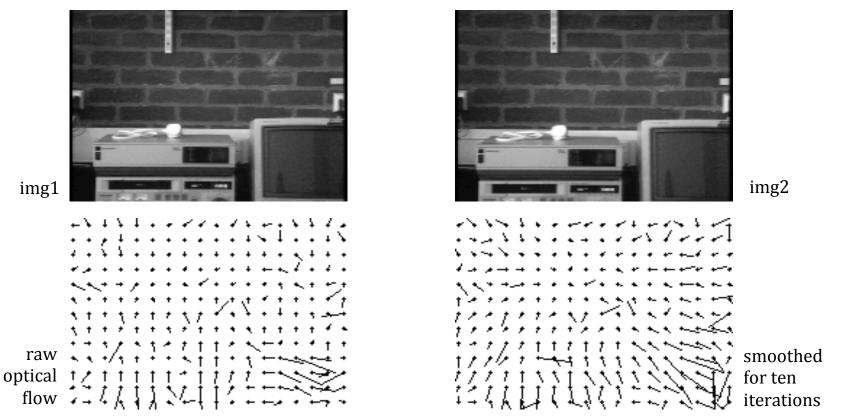
- The intensity-flow equation provides only one constraint on *two* variables (x-motion and y-motion)
- → It is only possible to find optical flow in one direction...





The "aperture" problem

It is only possible to find optical flow in one direction... *at any single point in the image !*



Smoothing can be done by incorporating neighboring points' information.

Observations & Warnings

- Assume the scene itself is static.
- Find matching chunks in the images.
- An instance of *correspondence*.

BUT

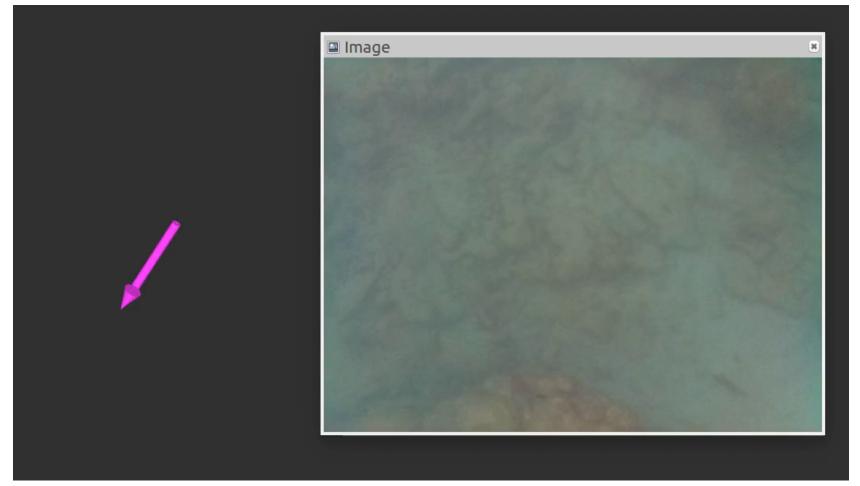
- World really isn't static.
- Lightning might change even in a static scene.

Features vs Optical Flow

- Feature-based methods
 - Detect features (corners, textured areas), extract descriptors, and track them
 - Sparse motion fields, but possibly robust tracking
 - Suitable especially when image motion is large (10s of pixels)
- Direct methods (optical flow)
 - Directly recover image motion from spatio-temporal image brightness variations
 - Global motion parameters directly recovered without an intermediate feature motion calculation
 - Dense motion fields, but more sensitive to appearance variations
 - Suitable for video and when image motion is small (< 10 pixels)

Camera and IMU

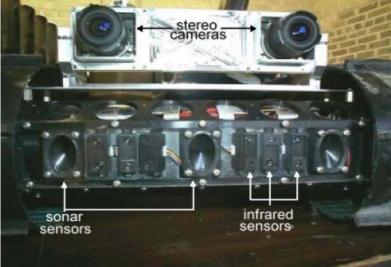
From drifter with Raspberry PI Camera and Pololu MinIMU-9 v3 at Barbados 2016 Field Trials



A Vision "solution"

• If interpreting a single image is difficult... What about more ?!

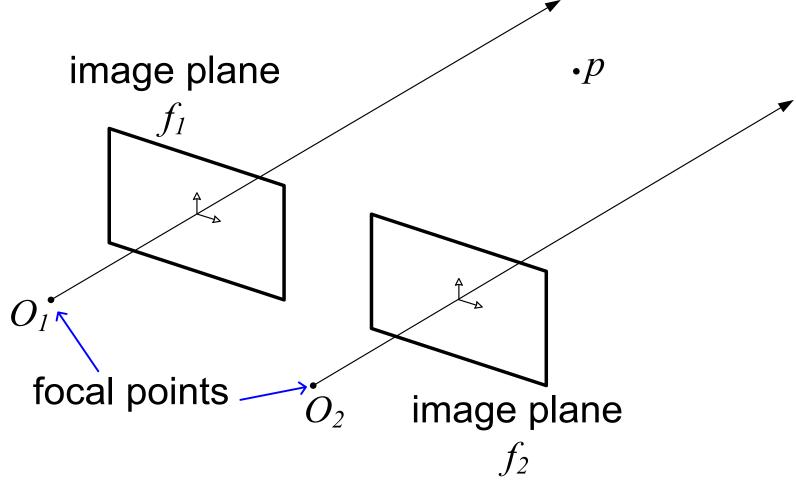
multiple cameras



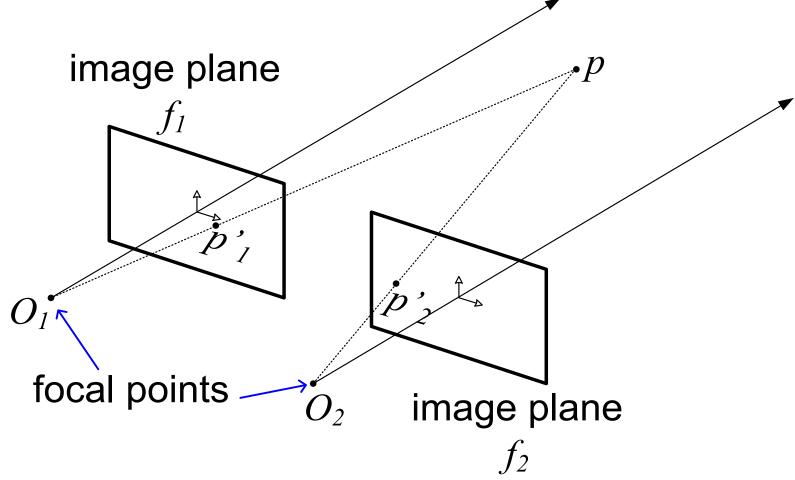
multiple times

CSCE 774: Robotic Systems

Stereo Vision: Pinhole Camera



Stereo Vision: Pinhole Camera

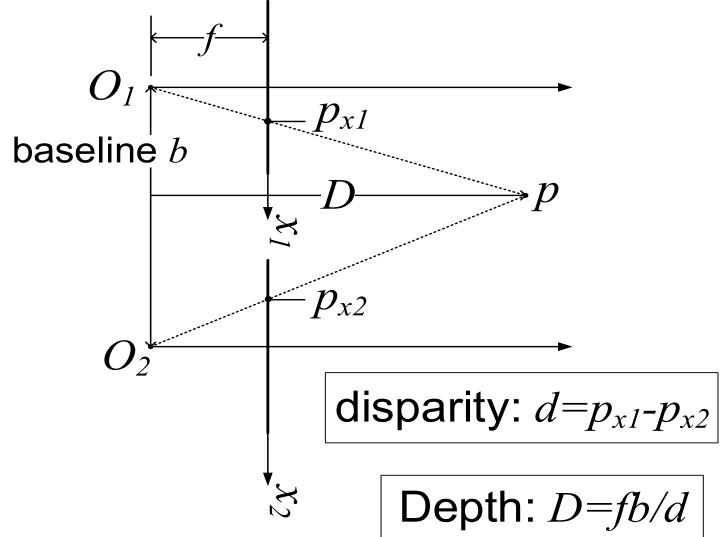


Stereo Vision: Pinhole Camera

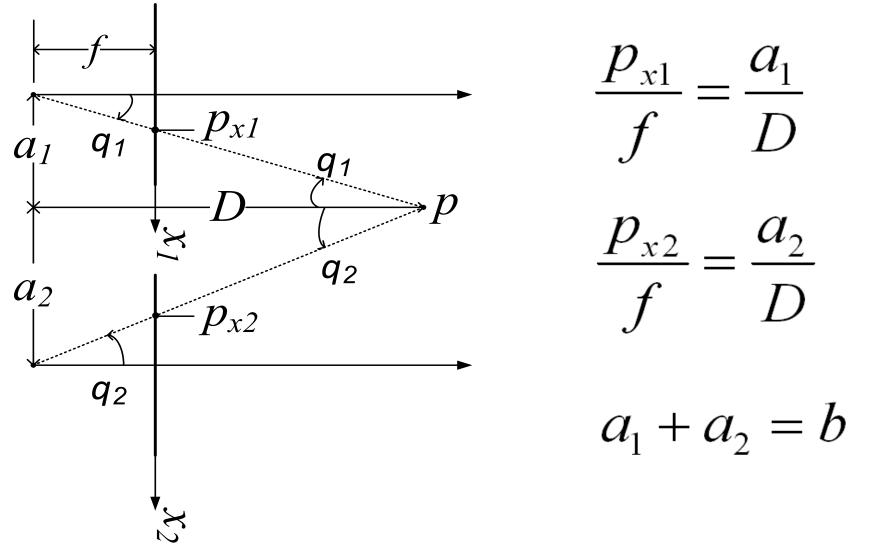


CSCE 774: Robotic Systems

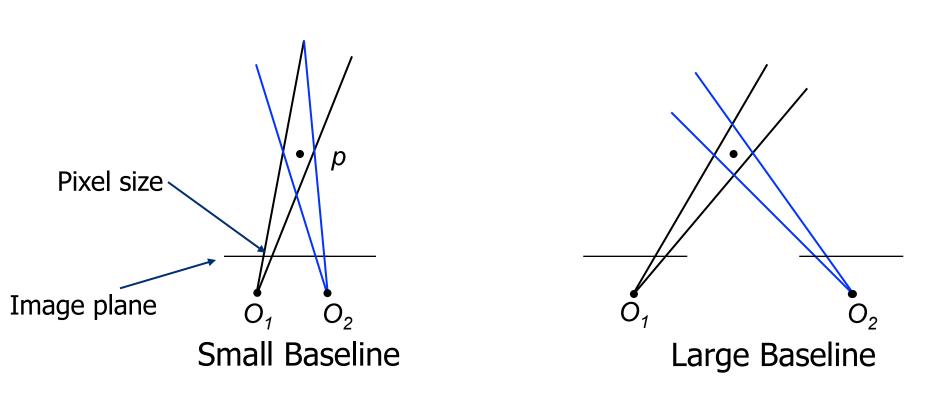
Stereo Vision: Pinhole



Stereo Vision: Pinhole



Baseline



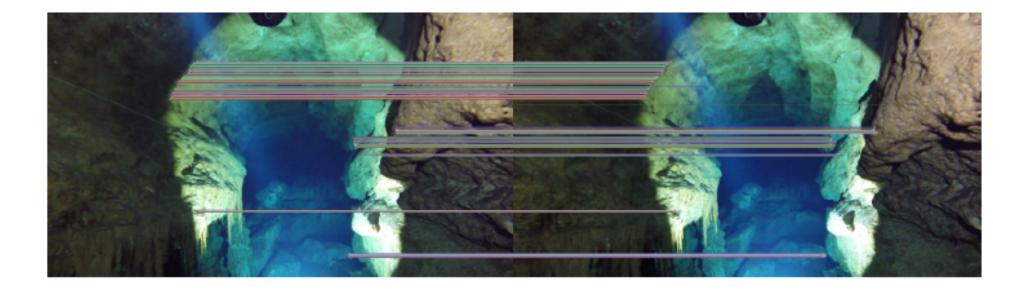
- •What's the optimal baseline?
 - Too small: large depth error
 - Too large: difficult search problem

Baseline

GoPro 3D HERO System

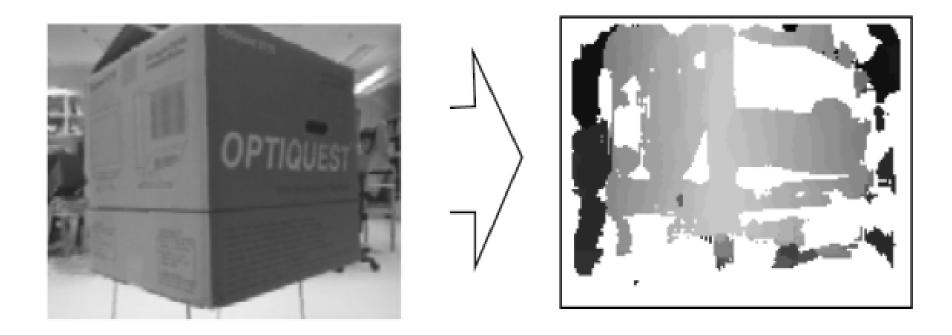
b=3.2 cm

Matching Left and Right



3D reconstruction

Stereo: Disparity Map



Using real-time stereo vision for mobile robot navigation

Don Murray

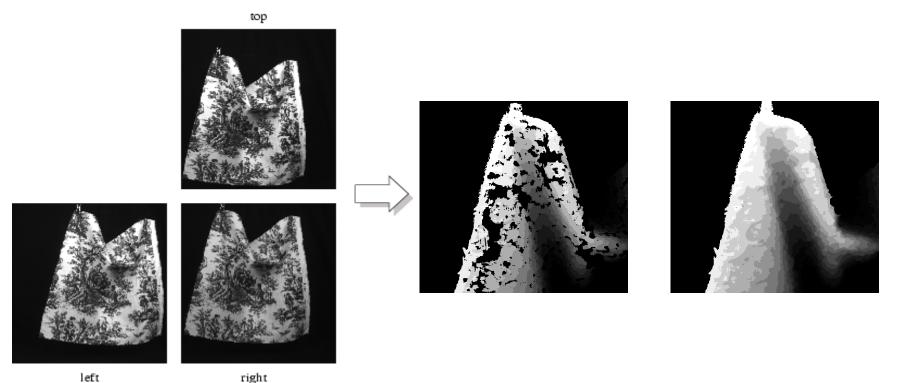
Jim Little

Computer Science Dept. University of British Columbia Vancouver, BC, Canada V6T 1Z4

Depth Map in a City

CSCE 774: Robotic Systems

Another Example (Hole Filling)



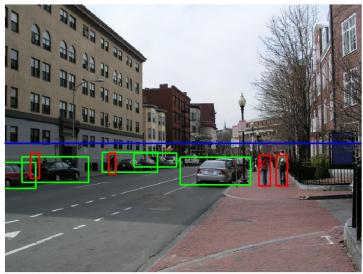
Cloth Parameters and Motion Capture by David Pritchard B.A.Sc., University of Waterloo, 2001

• Large number of algorithms out there: <u>http://vision.middlebury.edu/stereo/</u>

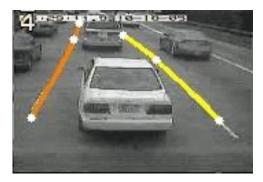
rank 43 different algorithms.

Object recognition

source: http://www.cs.cornell.edu/courses/cs4670/2013fa/



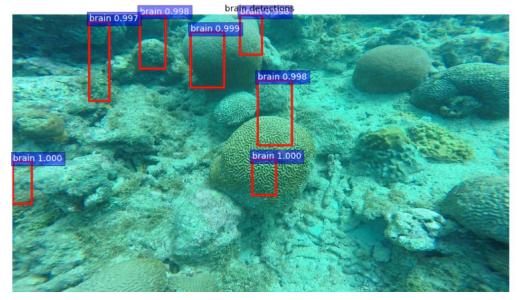
Pedestrian and car detection



Lane detection

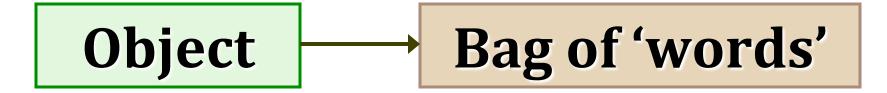
CSCE 774: Robotic Systems

From GoPro 3D Hero at Barbados 2015 Field Trial



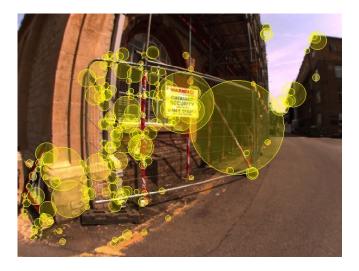
Coral classification

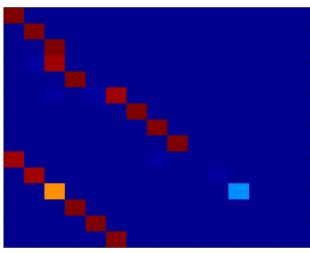
Bag of words



source: http://wikimedia.org

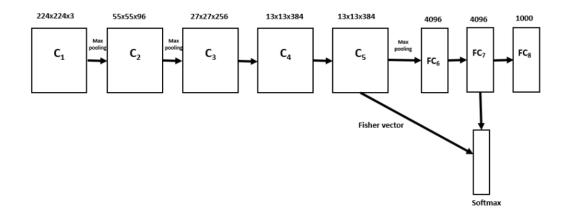
Appearance-based place recognition

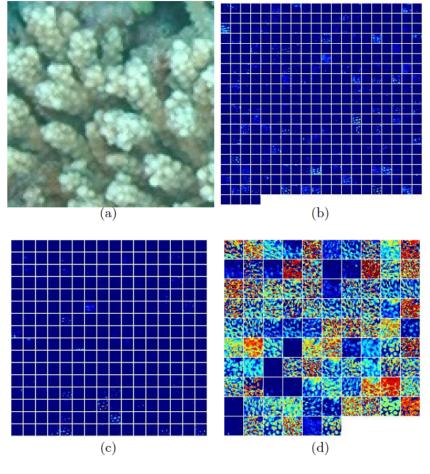




source: http://www.robots.ox.ac.uk/~mjc

Deep learning based classification





Computer Vision Books

- Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer, 2010
- Richard Hartley and Andrew Zisserman, "Multiple View Geometry in Computer Vision", Cambridge University Press, 2004
- David Forsyth and Jean Ponce, "Computer Vision: A Modern Approach", Pearson, 2011

Nice Classes

- Noah Snavely Introduction to Computer Vision <u>http://www.cs.cornell.edu/courses/</u> <u>cs4670/2013fa/lectures/lectures.html</u>
- Steve Seitz and Rick Szeliski Computer Vision <u>http://courses.cs.washington.edu/courses/</u> <u>cse576/08sp/</u>

