

UNIVERSITY OF SOUTH CAROLINA

CSCE 774 ROBOTIC SYSTEMS

Introduction Fall 2015

Ioannis Rekleitis

Present Everywhere

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education

CSCE 774: Robotic Systems

Robotic technology becomes affordable

TurtleBot 2

AR.DRONE

Kinect

IMU

Raspberry Pi

Lego Mindstorm

Past/Current Projects

Complete Optimal Terrain Coverage using an Unmanned Aerial Vehicle

Anqi Xu Chatavut Viriyasuthee Ioannis Rekleitis

🐯 McGill

Current work in U/W Robotics

Center for Computational Robotics (CCR)

- SCARR lab Jason O'Kane
- ART lab Jenay Beer
- AFRL Ioannis Rekleitis

AFRL: Autonomous Field Robotics Lab

Existing CCR Robotic Platforms

Upcoming CCR Robotic Platforms

Three Main Challenges in Robotics

- 1. Where am I? (Localization)
- 2. What the world looks like? (Mapping)
 - Together 1 and 2 form the problem of *Simultaneous Localization and Mapping* (SLAM)
- 3. How do I go from **A** to **B**? (Path Planning)
 - More general: Which action should I pick next? (Planning)

Robot

- Focus on **Localization**, **Mapping**, and **SLAM**
- Reading and discussing different research papers
- Presentations by students
- Hands on assignments

Evaluation

- 3 Homeworks, 10% each: 30%
 Final Examination: 20%
- Class Participation:
- Presentations:

30%

20%

Homeworks/Projects

- Using ROS and OpenCV
- Using Simulations
- Using sensor data from real robots
- Using real robots (TurtleBot)

Papers

- 1. H. W. Sorenson. Least-squares estimation from Gauss to Kalman, 1970
- 2. H. Durrant-Whyte and T. Bailey. Simultaneous Localisation and Mapping: Part I, 2006
- 3. T. Bailey and H. Durrant-Whyte. Simultaneous Localisation and Mapping: Part II, 2006
- 4. R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in robotic", 1990
- 5. S. J. Julier J. K. Uhlmann. A New Extension of the Kalman Filter to Nonlinear Systems
- 6. F. Lu and E. Milios, Globally consistent range scan alignment for environment mapping
- 7. F. Lu and E. Milios, Robot pose estimation in unknown environments by matching 2d range scans
- 8. G. Grisetti, C. Stachniss, and W. Burgard. Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters
- 9. D. Scaramuzza, F. Fraundorfer. Visual Odometry: Part I The First 30 Years and Fundamentals 2011.
- 10. F. Fraundorfer, D. Scaramuzza. Visual odometry: Part II Matching, robustness, optimization, and applications. 2012.
- 11. D. Nister O. Nardoditsky, and J. Bergen. Visual odometry for ground vehicle applications, 2006
- 12. B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle Adjustment — A Modern Synthesis
- 13. G. Klein and D. Murray. Parallel Tracking and Mapping for Small AR Workspaces, 2007
- 14. A.I. Mourikis and S.I. Roumeliotis. A Multi-State Constrained Kalman filter for Vision-aided Inertial Navigation, 2007
- 15. E. Jones and S. Soatto. Visual-Inertial Navigation, Mapping and Localization: A Scalable Real-Time Causal Approach, 2011.

- 16. R. Mur-Artal, J. M. M. Montiel and J. D. Tardós. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. 2015
- 17. M. Cummins and P. Newman. FAB-MAP: Probabilistic localization and mapping in the space of appearance, 2008
- 18. G. Sibley C. Mei, I. Reid, and P. Newman. Adaptive relative bundle adjustment, 2009
- 19. M. Milford, G. Wyeth. Persistent navigation and mapping using a biologically inspired SLAM system, 2010
- 20. C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast Semi-Direct Monocular Visual Odometry, 2014
- 21. J. Engel, T. Schöps, D. Cremers. LSD-SLAM: Large-Scale Direct Monocular SLAM, 2014.
- 22. R. A. Newcombe S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, A. Fitzgibbon. KinectFusion: Real-Time Dense Surface Mapping and Tracking, 2011
- 23. S. Thrun and M. Montemerlo. The GraphSLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures, 2006
- I. Mahon, O. Pizarro, M. Johnson-Roberson, A. Friedman, S. Williams, J. Henderson. Reconstructing Pavlopetri: mapping the world's oldest submerged town using stereo-vision, 2011
- 25. F. Shkurti, I. Rekleitis, M. Scaccia, G. Dudek. State estimation of an underwater robot using visual and inertial information, 2011
- 26. R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. G2O: A general framework for graph optimisation, 2011
- 27. M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental Smoothing and Mapping, 2008
- 28. M. Kaess, H. Johannsson, R. Roberts, V. Ila, J.J. Leonard, and F. Dellaert. iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree. 2012
- 29. M. Montemerlo, S. Thrun, D. Koller, and B.Wegbreit. FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges, 2003

Contact

- <u>http://www.cse.sc.edu/~yiannisr/</u>
- <u>http://www.cse.sc.edu/~yiannisr/774/2015</u>

• Email: <u>yiannisr@cse.sc.edu</u>

• **Office hours**: 3A54 -- Tue/Th 13:00-14:00 and by appointment

- Introductions
- Background
- Interests
- Projects
- Reasons
- Expectations

Position Representation

 Position representation is: L ${}^{A}P = \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \end{bmatrix}$ ^{A}P X

Orientation Representations

LB

 Describes the rotation of one coordinate system with respect to another

KR

Rotation Matrix

- Write the unit vectors of *B* in the coordinate system of *A*.
- Rotation Matrix:

AZB

Coordinate System Transformation

$$M = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_x \\ r_{21} & r_{22} & r_{23} & p_y \\ r_{31} & r_{32} & r_{33} & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} R & T \\ 0_{3\times 1} & 1 \end{bmatrix}$$

where R is the rotation matrix and T is the translation vector

Rotation Matrix

• The rotation matrix consists of 9 variables, but there are many constraints. The minimum number of variables needed to describe a rotation is three.

• **ZYX**: Starting with the two frames aligned, first rotate about the Z_B axis, then by the Y_B axis and then by the X_B axis. The results are the same as with using XYZ fixed angle rotation.

• There are 12 different combination of Euler Angle representations

Pitch

Yaw

Euler Angle concerns: Gimbal Lock

Using the **ZYZ** convention

- •(90°, 45°, -105°) \equiv (-270° , -315° , 255°)
- • $(72^{\circ}, 0^{\circ}, 0^{\circ}) \equiv (40^{\circ}, 0^{\circ}, 32^{\circ})$
- $(45^{\circ}, 60^{\circ}, -30^{\circ}) \equiv (-135^{\circ}, -60^{\circ}, 150^{\circ})$

multiples of 360° singular alignment (Gimbal lock) bistable flip

Axis-Angle Representation

• Represent an arbitrary rotation as a combination of a vector and an angle

Quaternions

- Are similar to axis-angle representation
- Two formulations
 - Classical
 - Based on JPL's standards

W. G. Breckenridge, "Quaternions - Proposed Standard Conventions," JPL, Tech. Rep. INTEROFFICE MEMORANDUM IOM 343-79-1199, 1999.

- Avoids Gimbal lock
- See also: M. D. Shuster, "A survey of attitude representations," Journal of the Astronautical Sciences, vol. 41, no. 4, pp. 439–517, Oct.–Dec. 1993.

- Sensors are devices that can sense and measure physical properties of the environment,
 - e.g. temperature, luminance, resistance to touch, weight, size, etc.
 - The key phenomenon is transduction
 - Transduction (engineering) is a process that converts one type of energy to another
- They deliver *low-level* information about the environment the robot is working in.
 - Return an incomplete description of the world.

- This information is **noisy** (imprecise).
- Cannot be modelled completely:
 - Reading = f(env) where f is the model of the sensor
 - Finding the inverse:
 - ill posed problem (solution not uniquely defined)
 - collapsing of dimensionality leads to ambiguity

Types of sensor

- General classification:
 - -active versus passive
 - Active: emit energy in environment

 More robust, less efficient
 - Passive: passively receive energy from env.
 - Less intrusive, but depends on env. e.g. light for camera
 - Example: stereo vision versus range finder.
 - contact versus non-contact

Sensors

Proprioceptive Sensors

(monitor state of robot)

- IMU (accels & gyros)
- Wheel encoders
- Doppler radar ...

Exteroceptive Sensors

(monitor environment)

- Cameras (single, stereo, omni, FLIR ...)
- Laser scanner
- MW radar
- Sonar

Sensor Characteristics

- All sensors are characterized by various properties that describe their capabilities
 - -Sensitivity:

(change of output) + (change of input)

- –Linearity: constancy of (output ÷ input)
 - Exception: logarithmic response cameras == wider dynamic range.
- Measurement/Dynamic range: difference between min. and max.

Sensor Characteristics

- Response Time: time required for a change in input to cause a change in the output
- –Accuracy: difference between measured & actual
- Repeatability: difference between repeated measures
- Resolution: smallest observable increment
 Bandwidth: result of high resolution or cycle
 - time

- IMU
- Wheel Encoders
- Compass
- Monocular Vision
- Stereo Vision
- RGBd (Kinnect)
- LIDAR

IMU's

- Gyro, accelerometer combination.
- Typical designs (e.g. 3DM-GX1[™]) use tri-axial gyros to track dynamic orientation and tri-axial DC accelerometers along with the tri-axial magnetometers to track static orientation.
- The embedded microprocessors contains programmable filter algorithms, which blend these static and dynamic responses in real-time.

Why vision?

- Passive (emits nothing).
 - Discreet.
 - Energy efficient.
- Intuitive.
- Powerful (works well for us, right?)
- Long and short range.
- Fast.

So, what's the problem?

• How hard is vision? Why do we think is do-able?

Problems:

- Slow.
- Data-heavy.
- Impossible.
- Mixes up many factors.

The "Vision Problem"

The vision problem in general...

- In trying to extract 3d structure from 2d images, vision is an *ill-posed* problem.
- Basically, there are too many possible worlds that might (in theory) give rise to a particular image

Ill-posed

• In trying to extract 3d structure from 2d images, vision is an *ill-posed* problem.

Ill-posed

• In trying to extract 3d structure from 2d images, vision is an *ill-posed* problem.

 An image isn't enough to disambiguate the many possible 3d worlds that could have produced it.

Camera Geometry

$3D \rightarrow 2D$ transformation: perspective projection

Coordinate Systems

Coordinate Systems

From 3d to 2d

Camera Calibration

- Camera Model
 - -[u v 1] Pixel coords
 - $-\begin{bmatrix} x_w & y_w & z_w \end{bmatrix}^T$ World coords

$$z_{c} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = A \begin{bmatrix} R & T \end{bmatrix} \begin{bmatrix} x_{w} \\ y_{w} \\ z_{w} \\ 1 \end{bmatrix}$$

- Intrinsic Parameters
 - $-\alpha_x = f \cdot m_x, \alpha_y = f \cdot m_y \text{ focal lengths in pixels}$
 - $-\gamma$ skew coefficient
 - u_0, v_o focal point
- Extrinsic Parameters
 - $-\begin{bmatrix} R & T \end{bmatrix}$ Rotation and Translation

 $A = \begin{bmatrix} \alpha_x & \gamma & u_0 \\ 0 & \alpha_y & v_o \\ 0 & 0 & 1 \end{bmatrix}$

Camera Calibration

Existing packages in MATLAB, OpenCV, etc

Correspondence Problem

Correspondence

From I_1

From I₂

_?-►

Stereo Vision: Pinhole Camera

Stereo Vision: Pinhole Camera

Stereo Vision: Pinhole Camera

CSCE 774: Robotic Systems

Stereo Vision: Pinhole

Stereo Vision: Pinhole

57

Large Baseline

Stereo: Disparity Map

Using real-time stereo vision for mobile robot navigation

Don Murray

Jim Little

Computer Science Dept. University of British Columbia Vancouver, BC, Canada V6T 1Z4

Another Example (Hole Filling)

Cloth Parameters and Motion Capture by David Pritchard B.A.Sc., University of Waterloo, 2001

Depth Map in a City

CSCE 774: Robotic Systems

- High Recall
- Good Precision
- Feature Detection
- Feature Matching
- Several Alternatives:
 - Harris Corners (OpenCV)
 - SURF (OpenCV)
 - SIFT
 - etc