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Present Everywhere

e At home

 On the road

* In the sky (drones)
* In the fields

-
.

 In resource utilization
(ROV in the oil industry)

* Along power lines
* In Hospitals \
* Education
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Robotic technology becomes affordable
" TurtleBot 2 AR.DRONE Kinect

Lego Mindstorm
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Complete Optimal Terrain Coverage
using an Unmanned Aerial Vehicle

Anqi Xu
Chatavut Viriyasuthee
loannis Rekleitis
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Instructing Aqua with tags




Current work in U/W Robotics

'Asta reef, Barbados
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Center for Computational Robotics (CCR)

 SCARR lab - Jason O’Kane
* ART lab - Jenay Beer
 AFRL - Ioannis Rekleitis

 AFRL: Autonomous Field Robotics Lab
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Existing CCR Robotic Platforms
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Upcoming CCR Robotic Platforms
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Three Main Challenges in Robotics

1. Where am I? (Localization)
2. What the world looks like? (Mapping)

— Together 1 and 2 form the problem of Simultaneous
Localization and Mapping (SLAM)

3. How do Igo from A to B? (Path Planning)

— More general: Which action should I pick next?
(Planning)

2
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Syllabus

NZ
)

Focus on Localization, Mapping, and SLAM
Reading and discussing different research papers
Presentations by students

Hands on assignments

CSCE 774: Robotic Systems

12



Evaluation

3 Homeworks, 10% each: 30%
* Final Examination: 20%
* (Class Participation: 20%
* Presentations: 30%

N
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Homeworks/Projects

* Using ROS and OpenCV

* Using Simulations

* Using sensor data from real robots
* Using real robots (TurtleBot)

N
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11.

12.

13.

14.

15.

Papers

4

H. W. Sorenson. Least-squares estimation from Gauss to Kalman, 1970

H. Durrant-Whyte and T. Bailey. Simultaneous Localisation and Mapping: Part |,
2006

T. Bailey and H. Durrant-Whyte. Simultaneous Localisation and Mapping: Part ]I,
2006

R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in
robotic”, 1990

S.]. Julier ]. K. Uhlmann. A New Extension of the Kalman Filter to Nonlinear
Systems

F. Lu and E. Milios, Globally consistent range scan alignment for environment
mapping

F. Lu and E. Milios, Robot pose estimation in unknown environments by matching
2d range scans

G. Grisetti, C. Stachniss, and W. Burgard. Improved Techniques for Grid Mapping
with Rao-Blackwellized Particle Filters

D. Scaramuzza, F. Fraundorfer. Visual Odometry: Part I - The First 30 Years and
Fundamentals 2011.

F. Fraundorfer, D. Scaramuzza. Visual odometry: Part I - Matching, robustness,
optimization, and applications. 2012.

D. Nister O. Nardoditsky, and ]. Bergen. Visual odometry for ground vehicle
applications, 2006

B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle Adjustment
— A Modern Synthesis

G. Klein and D. Murray. Parallel Tracking and Mapping for Small AR Workspaces,
2007

A.l. Mourikis and S.I. Roumeliotis. A Multi-State Constrained Kalman filter for
Vision-aided Inertial Navigation, 2007

E.]Jones and S. Soatto. Visual-Inertial Navigation, Mapping and Localization: A
Scalable Real-Time Causal Approach, 2011.
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29.

R. Mur-Artal, . M. M. Montiel and J. D. Tard6s. ORB-SLAM: A Versatile and
Accurate Monocular SLAM System. 2015

M. Cummins and P. Newman. FAB-MAP: Probabilistic localization and
mapping in the space of appearance, 2008

G. Sibley C. Mei, L. Reid, and P. Newman. Adaptive relative bundle
adjustment, 2009

M. Milford, G. Wyeth. Persistent navigation and mapping using a
biologically inspired SLAM system, 2010

C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast Semi-Direct Monocular
Visual Odometry, 2014

J. Engel, T. Schops, D. Cremers. LSD-SLAM: Large-Scale Direct Monocular
SLAM, 2014.

R. A. Newcombe S. Izadj, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P.
Kohli, . Shotton, S. Hodges, A. Fitzgibbon. KinectFusion: Real-Time Dense
Surface Mapping and Tracking, 2011

S. Thrun and M. Montemerlo. The GraphSLAM Algorithm with
Applications to Large-Scale Mapping of Urban Structures, 2006

I. Mahon, O. Pizarro, M. Johnson-Roberson, A. Friedman, S. Williams, J.
Henderson. Reconstructing Pavlopetri: mapping the world's oldest
submerged town using stereo-vision, 2011

F. Shkurti, I. Rekleitis, M. Scaccia, G. Dudek. State estimation of an
underwater robot using visual and inertial information, 2011

R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. G20: A
general framework for graph optimisation, 2011

M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental Smoothing
and Mapping, 2008

M. Kaess, H. Johannsson, R. Roberts, V. Ila, ].]. Leonard, and F. Dellaert.
iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree. 2012
M. Montemerlo, S. Thrun, D. Koller, and B.Wegbreit. FastSLAM 2.0: An
Improved Particle Filtering Algorithm for Simultaneous Localization and
Mapping that Provably Converges, 2003
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Contact

* http://www.cse.sc.edu/~yiannisr/
* http://www.cse.sc.edu/~vyiannisr/774 /2015

 Email: viannisr@cse.sc.edu

* Office hours: 3A54 -- Tue/Th 13:00-14:00
and by appointment

N
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Class Interests

e Introductions
* Background
* Interests

* Projects

* Reasons

* Expectations

\V/
A
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Position Representation

* Position representation

1S. _ - AN
P

AP= py
-pZ_
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Orientation Representations

Ly

 Describes the rotation of
one coordinate system
with respect to another

Ya
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Rotation Matrix

e Write the unit vectors
of B in the coordinate
system of A.

e Rotation Matrix:

STRAT

Z;4R=|:AXB AYB AZB]= 1 T
RE LY

-XB X, 5 X4 ZB'XA-

=| Xz Y, Yp¥, Zz'Y,
XB Z, s Ly 2Ly Z,
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Coordinate System Transformation

M = i Tn s P, _ R T
O3x1 1

where R is the rotation matrix and T is the translation vector

,\V-\\\Q/:
@ CSCE 774: Robotic Systems 71



Rotation Matrix

 The rotation matrix consists of 9 variables, but
there are many constraints. The minimum
number of variables needed to describe a

rotation is three.

2
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Euler Angles

* ZYX: Starting with the two frames aligned, first
rotate about the Z; axis, then by the Y axis and
then by the X; axis. The results are the same as
with using XYZ fixed angle rotation.

e There are 12 different combination of Euler
Angle representations

@’;@ CSCE 774: Robotic Systems
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Euler Angles

* Traditionally the three angles along the axis are
called Roll, Pitch, and Yaw
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Euler Angles

* Traditionally the three angles along the axis are
called Roll, Pitch, and Yaw

Roll
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Euler Angles

* Traditionally the three angles along the axis are
called Roll, Pitch, and Yaw

Pitch

;\V.-\\\?é
@ CSCE 774: Robotic Systems

26



Euler Angles

* Traditionally the three angles along the axis are
called Roll, Pitch, and Yaw

Yaw

;\_\\\Vfé
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Euler Angle concerns: Gimbal Lock

Using the ZYZ convention

*(90°,45°, -105°) = (-270°,-315° 255°)  multiples of 360°

*(72°,0°, 0°) = (40°, 0°, 32°) singular alignment (Gimbal lock)
* (45°, 60° -30°) = (-135°,-60°,150°) bistable flip

%
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Axis-Angle Representation

* Represent an arbitrary rotation as a
combination of a vector and an angle

(A

v X

A
()
iy
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Quaternions

()

* Are similar to axis-angle representation

Two formulations

— (Classical

— Based on JPL’s standards

W. G. Breckenridge, “Quaternions - Proposed Standard
Conventions,” JPL, Tech. Rep. INTEROFFICE MEMORANDUM IOM
343-79-1199, 1999.

 Avoids Gimbal lock

See also: M. D. Shuster, “A survey of attitude representations,” Journal of the
Astronautical Sciences, vol. 41, no. 4, pp. 439-517, Oct.-Dec. 1993.

CSCE 774: Robotic Systems
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Robot Sensors

7
NA
Za

* Sensors are devices that can sense and measure
physical properties of the environment,

e e.g.temperature, luminance, resistance to touch, weight,
size, etc.
 The key phenomenon is transduction

e Transduction (engineering) is a process that converts one
type of energy to another

* They deliver low-level information about the
environment the robot is working in.

— Return an incomplete description of the world.
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Robot Sensors

* This information is noisy (imprecise).

* Cannot be modelled completely:
— Reading = f(env) where fis the model of the sensor
— Finding the inverse:

* ill posed problem (solution not uniquely defined)
* collapsing of dimensionality leads to ambiguity

CSCE Robotic Systems
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Types of sensor

* General classification:
—active versus passive

* Active: emit energy in environment
— More robust, less efficient

* Passive: passively receive energy from env.
— Less intrusive, but depends on env. e.g. light for camera

* Example: stereo vision versus range finder.

—contact versus non-contact

\/
Az
AN
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Sensors

* Proprioceptive Sensors
(monitor state of robot)
— IMU (accels & gyros)
— Wheel encoders
— Doppler radar ...

* Exteroceptive Sensors
(monitor environment)

— Cameras (single, stereo, omni,

FLIR ...)
— Laser scanner
— MW radar
— Sonar

. — Tactile...
r\-\\é/:
s CSCE Robotic Systems
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Sensor Characteristics

* All sensors are characterized by various
properties that describe their capabilities

—Sensitivity:
(change of output) + (change of input)
— Linearity: constancy of (output + input)

* Exception: logarithmic response cameras ==
wider dynamic range.

—Measurement/Dynamic range:
difference between min. and max.
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Sensor Characteristics

—Response Time: time required for a change
in input to cause a change in the output

—Accuracy: difference between measured &
actual

—Repeatability: difference between repeated
measures

—Resolution: smallest observable increment
—Bandwidth: result of high resolution or cycle
time

CSCE Robotic Systems 36



Focus on:

 IMU

 Wheel Encoders
* Compass
 Monocular Vision
* Stereo Vision

* RGBd (Kinnect)
 LIDAR

N
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IMU's

* Gyro, accelerometer combination.

* Typical designs (e.g. 3DM-GX1™)
use tri-axial gyros to track
dynamic orientation and tri-axial
DC accelerometers along with the
tri-axial magnetometers to track
static orientation.

* The embedded microprocessors
contains programmable filter
algorithms, which blend these
static and dynamic responses in
real-time.

2
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Why vision?

* Passive (emits nothing).
— Discreet.
— Energy efficient.

* Intuitive.

* Powerful (works well for us, right?)
* Long and short range.

* Fast.

2
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So, what’s the problem?

* How hard is vision? Why do we think is do-able?

Problems:

* Slow.

* Data-heavy.

* Impossible.

* Mixes up many factors.

N
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The “Vision Problem”

Input ——

;\V_\\\p/a_
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Vision
Algorithm

— Qutput
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The vision problem in general...

e In trying to extract 3d structure from 2d images, vision is
an ill-posed problem.

e Basically, there are too many possible worlds that might
(in theory) give rise to a particular image

.

_—
-

N
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lll-posed

=)

* Intrying to extract 3d structure from 2d images,
vision is an ill-posed problem.

oy n\‘?‘
!EB }
1 — S e —

Doet81997 Fokodae

Doet® 1997 Fokode
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lll-posed

=)

* Intrying to extract 3d structure from 2d images,

vision is an ill-posed problem.

ot
j=p 8 !-m;; ’

Doet81997 Fokodae

— An image isn't enough to disambiguate the many
possible 3d worlds that could have produced it.
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Camera Geometry

3D->2D transformation: perspective projection

center of projection

/

/

focal length

image plane
,\V'-\\\Q/:
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Coordinate Systems

canonical axes
at the C.0O.P.

y

pixel coordinates

\"

object coordinates

e

optical axis

u (col)

A 4

(row)

——

S

\/
A
@GN
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principal
point

Add coordinate systems in order to
describe feature points...
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Coordinate Systems

; pixel coordinates 1 1
image can. coords: (x,y) / ; (X,Y,Z) in canonical coords

canonical axes z

fl_—"

object coordinates

;\V_\\\p/a_
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From 3d to 2d

pixel coordinates

image can. coords: (XV v

(X,Y,Z) in canonical coords

Y

canonical axes z

object coordinates

_______________________________________________________

_______________________________________________________

a nonlinear transformation

goal: to recover information about (X,Y,Z) from
V (xy)
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Camera Calibration

 Camera Model ] N
— [u v 1] Pixel coords 2 v =4 7] j:
— [x, », =z 1 World coords ! 1
* Intrinsic Parameters
—a, = f-m,a, = f-m, focal lengths in pixels
A =

— y skew coefficient
— u,,v, focal point
* Extrinsic Parameters
—[r 7] Rotation and Translation

@f‘@ CSCE 774: Robotic Systems
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Camera Calibration

Existing packages in MATLAB, OpenCV, etc

N
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Correspondence Problem
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Correspondence

From |, From I,




Stereo Vision: Pinhole Camera

Image plane JZ

i

N\

focal points —0, image plane

VE

,\\’-\\\Q/:
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Stereo Vision: Pinhole Camera

image plane

o<

\

. / .
focal points O,  image plane

VE

s  CSCE 774: Robotic Systems 5




Stereo Vision: Pinhole Camera

(part of)
epipolar plane

Image plane

epipolar line

O

O; Image plane

J2

focal points
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Stereo Vision: Pinhole

Prad
P
Prad
Piae
Prad
PR
P

.
P
P
Prad
Prad
.
Prad

disparity: d=p,;-p.>

S Depth: D=fb/d

\V/
A
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Stereo Vision: Pinhole

f A
~~~~~~~ -
.......... < Dy
a; 91 [ A
! D—Cp
I
______________ q2
“@ L
""""""""" [ pXZ
------- <\ »

o),
\
=
. NG}
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Large Baseline
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Stereo: Disparity Map

Using real-time stereo vision for mobile robot navigation

Don Murray Jim Little

Computer Science Dept,
University of British Columbia
Vancouver, BC. Canada VET 1724
A
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Another Example (Hole Filling)

left right

Cloth Parameters and Motion Capture by David Pritchard
B.A.Sc., University of Waterloo, 2001

CSCE 774: Robotic Systems
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Depth Map in a City

?}L’-\-\Vfé
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Good Feature

* High Recall

* Good Precision
 Feature Detection
* Feature Matching

* Several Alternatives:
— Harris Corners (OpenCV)
— SURF (OpenCV)
— SIFT
— etc

2
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