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Three Main Challenges in Robotics

1. Where am I? (Localization)
– Sense
– relate sensor readings to a world model
– compute location relative to model
– assumes a perfect world model

2. What the world looks like? (Mapping)
– sense from various positions
– integrate measurements to produce map
– assumes perfect knowledge of position

• Together 1 and 2 form the problem of Simultaneous 
Localization and Mapping (SLAM)

3. How do I go from A to B? (Path Planning)
– More general: Which action should I pick next?
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Mapping

• What the world looks like

• Improve the accuracy of the map

• Ensure that all the important parts of the 
environment are mapped – Exploration!
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Environment Representation (Map)

• Grid Based Maps

• Feature Based Maps

• Topological Maps

• Hybrid Maps
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Consider this Environment:
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Three Basic Map Types

Topological:
Collection of nodes and 

their interconnections

Grid-Based:
Collection of discretized
obstacle/free-space pixels

Feature-Based:
Collection of landmark 
locations and correlated 
uncertainty
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Three Basic Map Types

Grid-Based Feature-Based Topological

Construction Occupancy grids Kalman Filter Navigation 
control laws

Complexity Grid size and 
resolution

Landmark 
covariance (N3)

Minimal 
complexity

Obstacles Discretized
obstacles

Only structured 
obstacles

GVG defined by 
the safest path

Localization Discrete 
localization

Arbitrary 
localization

Localize to nodes

Exploration Frontier-based 
exploration

No inherent 
exploration

Graph 
exploration
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Grid Based Maps

• Occupied cells

• Free cells

• Unknown cells
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Frontier based Exploration (Grid Maps)

unknown

obstacle

empty
Frontier 

Cells
Frontier 
Targets
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Topological Representations

• B. J. Kuipers and Y.-T. Byun. “A robot exploration and mapping strategy based on a 
semantic hierarchy of spatial representations”. In Journal of Robotics and Autonomous 
Systems, 8: 47-63, 1991.
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Generalized Voronoi Graph (GVG)

H. Choset, J. Burdick, “Sensor based planning, part ii: Incremental construction of the generalized voronoi

graph”. In IEEE Conference on Robotics and Automation, pp. 1643 – 1648, 1995.

Free Space
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Generalized Voronoi Graph (GVG)
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Free Space with Topological Map (GVG)



Generalized Voronoi Graph (GVG)
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Free Space with Topological Map (GVG)

•Access GVG



Generalized Voronoi Graph (GVG)
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Free Space with Topological Map (GVG)

•Access GVG
•Follow Edge
•Home to the 
MeetPoint
•Select Edge



Exploration via Graph Search

• Exhaustive Depth First Search

• Breadth-First Search 

• Heuristics
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Irregular Triangular Mesh (ITM)

• Terrain Representation 

• Underlying Topological Structure

• Path Planning and Exploration
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• Convert ITM into Connected Graph

From 2.5D Representation to Topological
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Planning
• Convert ITM into Connected Graph

• Planning using Graph Search Algorithms: 

– Dijkstra, A* search algorithms
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Planning

• Convert ITM into Connected Graph

• Path Planning using Graph Search Algorithms: 

– Dijkstra, A* search algorithms

• Different Cost Functions 

– Number of triangles

CSCE 774: Robotic Systems 19

1Q

Q



Planning

• Convert ITM into Connected Graph

• Path Planning using Graph Search Algorithms: 

– Dijkstra, A*

• Different Cost Functions 

– Number of triangles

– Euclidian distance
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Planning
• Convert ITM into Connected Graph

• Path Planning using Graph Search Algorithms: 

– Dijkstra, A*

• Different Cost Functions 

– Number of triangles

– Euclidian distance

– Slope of each triangle
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Planning
• Convert ITM into Connected Graph

• Path Planning using Graph Search Algorithms: 

– Dijkstra, A*

• Different Cost Functions 

– Number of triangles

– Euclidian distance

– Slope of each triangle

– Cross triangle slope
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Exploration Planning Problem

Two fundamental problems for path planning during 
exploration and mapping:

 Planning for re-
localization
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Exploration Planning Problem

– Planning for re-
localization

– Planning the 
exploration of 
new territory

Two fundamental problems for path planning during 
exploration and mapping:
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Previous Localization Planning

• Reduce measure of map or position entropy 

• Variety of graph search planning algorithms 
(breadth first, A*-search, RRT)

• Evaluate paths with simulation, or Cramer-Rao
bounds for expected uncertainty

• e.g. [Fox et al RAS 1998], [Sim and Roy ICRA 2005], 
[He et al ICRA 2008], [Censi et al ICRA 2008]
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Previous Exploration Planning

• Includes motion into unexplored regions

• Typically requires prior knowledge of 
environment properties or rough layout

• Computation of exploration effects is a 
challenge

• e.g. [Bourque and Dudek IROS 1999], 
[Bourgault et al IROS 2002], [Kollar and Roy 
IJRR 2008]
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Exploring a Camera Sensor Network
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D. Meger, I. Rekleitis, and G. Dudek. “Heuristic Search Planning to 
Reduce Exploration Uncertainty”, IROS 2008.



Heuristic Search Planning Method

• Solution to exploration planning for camera 
sensor networks

– Composed of two alternated steps: exploration and 
re-localization

– Combined distance and uncertainty cost function

– Heuristic search for good paths
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Exploration and Uncertainty Reduction 

• Decision (exploration vs exploitation)

• Target Node

• Path Planning through the known graph

• Exploration Strategies
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Exploration and Uncertainty Reduction 

• Decision (exploration vs. exploitation)

– Epsilon-Greedy

– Epsilon-First 

– Adaptive

– Bounded Uncertainty

• Target Node

• Path Planning through the known graph

• Exploration Strategies
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Exploration and Uncertainty Reduction 

• Decision (exploration vs. exploitation)

• Target Node (Exploration)

– Random

– Shortest distance

– Maximum Uncertainty

– Minimum Uncertainty

• Path Planning through the known graph

• Exploration Strategies
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Exploration and Uncertainty Reduction 

• Decision (exploration vs. exploitation)

• Target Node (Relocalization)

– Maximum Uncertainty

• Path Planning through the known graph

• Exploration Strategies
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Exploration and Uncertainty Reduction 

• Decision (exploration vs. exploitation)

• Target Node

• Path Planning through the known graph
– Work with D. Meger and G. Dudek [IROS 2008]

– A* based strategy

– Cost: 

– Distance-based “cost-to-go” heuristic function h used to 
compute estimated cost

• Exploration Strategies
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Effect of α Parameter for Relocalization
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• Graph search to optimize cost function

• Heuristic search allows considering only a fraction 
of the paths, ordered by expected cost

• Distance-based “cost-to-go” heuristic function h
used to compute estimated cost

Heuristic Search

Cost so far Estimated cost to goEstimated cost through n
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Exploration and Uncertainty Reduction 

• Decision (exploration vs. exploitation)

• Target Node

• Path Planning through the known graph

• Exploration Strategies

– One Step Exploration

– Ear based exploration
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Ear-Based Exploration Algorithm
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Shortest Node
P(exploit)=0.3
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Experimental Results
Bounded Uncertainty
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Experimental Results
Different Strategies
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Planning Exploratory Steps
• Choose motion in unexplored space to locate 

additional camera nodes 

• Planner cannot simulate these paths

• Evaluated 2 strategies: 1) nearest camera and 2) 
a randomly selected camera
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Simulation Results

• Compared planners over many trials

• 3 realistic network types (2 shown)

• 3 methods for comparison:

– Depth-first

– Return to origin

– Return to nearest explored
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Simulated Relocalization Results
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Simulated Exploration Results
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Exploration of the GVG
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Simulation in StageRos



Exploration of the GVG
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Real environment, McConnell 4th floor



Exploration of the GVG
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Real environment, McConnell 3rd floor



Video of the Ear-based Exploration
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Key Points

• Mapping requires exploration

• Exploration strategies depend on the 
representation

• Topological representations are the most 
convenient for exploration

• Two objectives:

– Explore new territory

– Improve the accuracy by relocalization
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• QUESTIONS?
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Orientation Representations

• Describes the rotation of 
one coordinate system 
with respect to another
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Rotation Matrix

• Write the unit vectors 
of B in the coordinate 
system of A.

• Rotation Matrix:
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Properties of Rotation Matrix
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Coordinate System Transformation
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where R is the rotation matrix and T is the translation vector



Rotation Matrix

• The rotation matrix consists of 9 variables, but
there are many constraints. The minimum
number of variables needed to describe a
rotation is three.
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Rotation Matrix-Single Axis

CSCE 774: Robotic Systems 56

     
   

 
   

   

 
   
   















 









































100

0cossin

0sincos

cos0sin

010

sin0cos

cossin0

sincos0

001

















z

y

x

R

R

R



Fixed Angles

• One simple method is to perform three rotations 
about the axis of the original coordinate frame:

– X-Y-Z fixed angles

• There are 12 different combinations
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Inverse Problem

• From a Rotation matrix find the fixed angle rotations:
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Euler Angles

• ZYX: Starting with the two frames aligned,  first 
rotate about the ZB axis, then by the YB axis and 
then by the XB axis. The results are the same as 
with using XYZ fixed angle rotation. 

• There are 12 different combination of Euler 
Angle representations
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Euler Angles

• Traditionally the three angles along the axis are 
called Roll, Pitch, and Yaw
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Euler Angles

• Traditionally the three angles along the axis are 
called Roll, Pitch, and Yaw

Roll

CSCE 774: Robotic Systems 61

X

Y

Z



Euler Angles

• Traditionally the three angles along the axis are 
called Roll, Pitch, and Yaw

Pitch
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Euler Angles

• Traditionally the three angles along the axis are 
called Roll, Pitch, and Yaw

Yaw
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Euler Angle concerns: Gimbal Lock
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Using the ZYZ convention
•(90°, 45°, −105°) ≡ (−270°, −315°, 255°) multiples of 360°
•(72°, 0°, 0°) ≡ (40°, 0°, 32°) singular alignment (Gimbal lock)
• (45°, 60°, −30°) ≡ (−135°, −60°, 150°) bistable flip



Axis-Angle Representation

• Represent an arbitrary rotation as a 
combination of a vector and an angle
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Quaternions

• Are similar to axis-angle representation

• Two formulations
– Classical

– Based on JPL’s standards
W. G. Breckenridge, “Quaternions - Proposed Standard 
Conventions,” JPL, Tech. Rep. INTEROFFICE MEMORANDUM IOM 
343-79-1199, 1999.

• Avoids Gimbal lock

• See also: M. D. Shuster, “A survey of attitude representations,” Journal of the 
Astronautical Sciences, vol. 41, no. 4, pp. 439–517, Oct.–Dec. 1993.
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Quaternions

Classic notation JPL-based
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See also: N. Trawny and S. I. Roumeliotis, “Indirect Kalman Filter for 3D Attitude Estimation,” 
University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep. 2005-002, March 2005.



Coordinate frames on PR2

CSCE 774: Robotic Systems 68


