

UNIVERSITY OF

CSCE 774 ROBOTICS SYSTEMS

Ultrasonic Sensing and Mapping

Ioannis Rekleitis

Introduction to Mapping

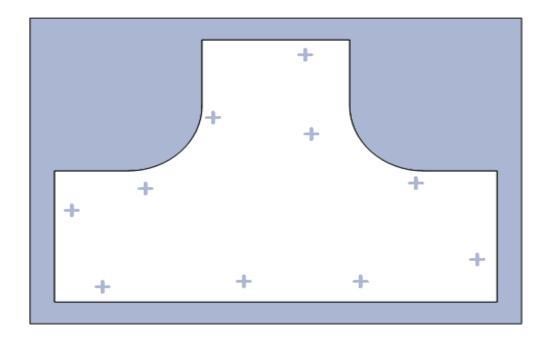
- What the world looks like?
- Knowledge representation
 - Robotics, AI, Vision
- Who is the end-user?
 - Human or Machine
- Ease of Path Planning
- Uncertainty!

Simultaneous Localization And Mapping

SLAM is the process of building a map of an environment while, at the same time, using that map to maintain the location of the robot.

- Problems for SLAM in large scale environments:
 - Controlling growth of uncertainty and complexity
 - Achieving autonomous exploration

Consider this Environment:



Three Basic Map Types

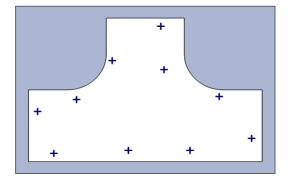
Grid-Based:

Collection of discretized obstacle/free-space pixels

_													_	_	
									÷						
								_	_	_					
						+									
									+						
				+								+			
	+														
														1-	
		-	-				+				÷				

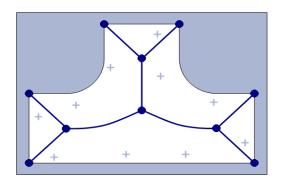
Feature-Based:

Collection of landmark locations and correlated uncertainty



Topological:

Collection of nodes and their interconnections

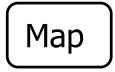


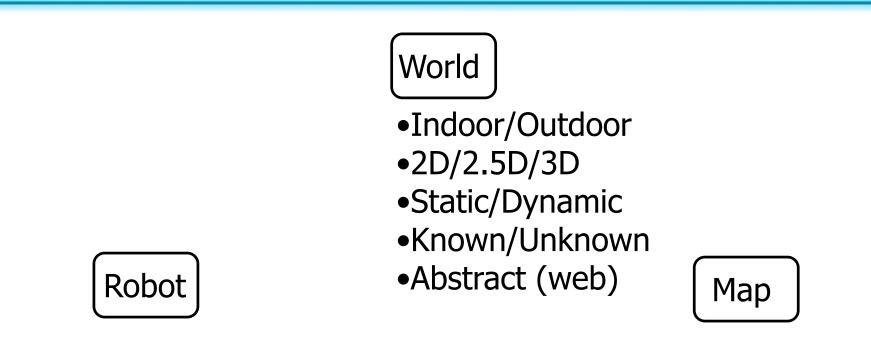
Three Basic Map Types

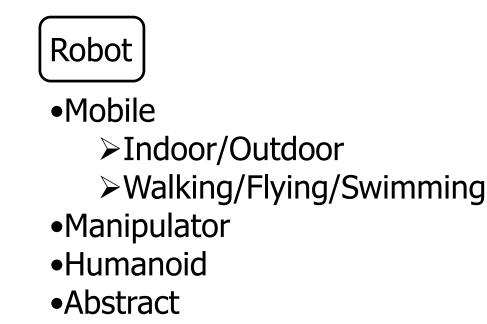
	Grid-Based	Feature-Based	Topological
Construction	Occupancy grids	Kalman Filter	Navigation control laws
Complexity	Grid size <i>and</i> resolution	Landmark covariance (N ³)	Minimal complexity
Obstacles	Discretized obstacles	Only structured obstacles	GVG defined by the safest path
Localization	Discrete localization	Arbitrary localization	Localize to nodes
Exploration CSCE 774: Robotic System	Frontier-based exploration	No inherent exploration	Graph exploration

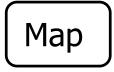
Other Maps

	Appearance	Geometry	Mesh
	Based	Based	Based
Construction	Images	Lines, planes, etc	Mesh
Path Planning	N/A	Geometry based	Graph based
Localization	Arbitrary	Arbitrary	Arbitrary
	localization	localization	localization

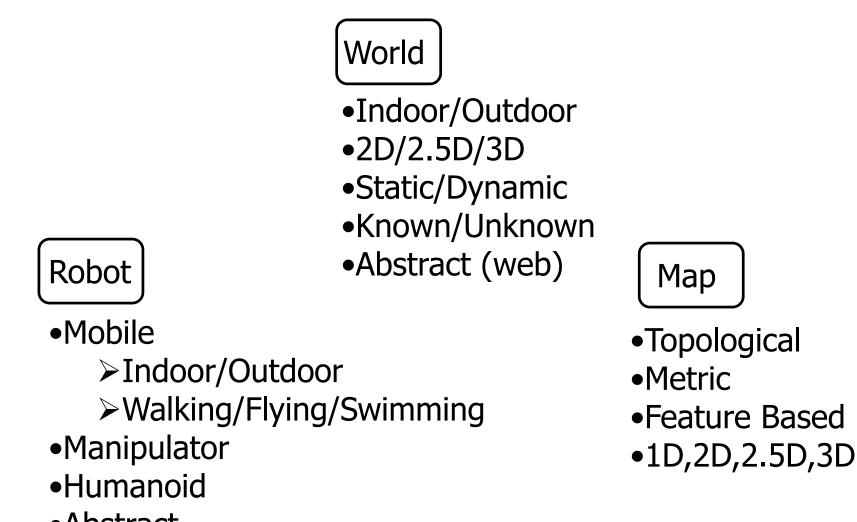




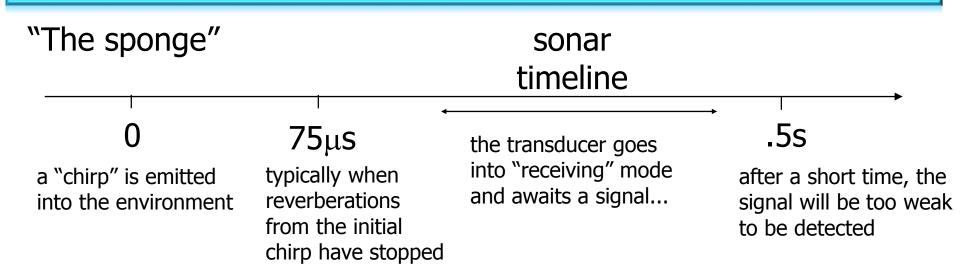


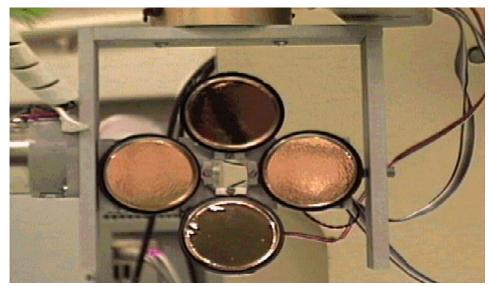


- Topological
- •Metric
- •Feature Based
- •1D,2D,2.5D,3D



Abstract

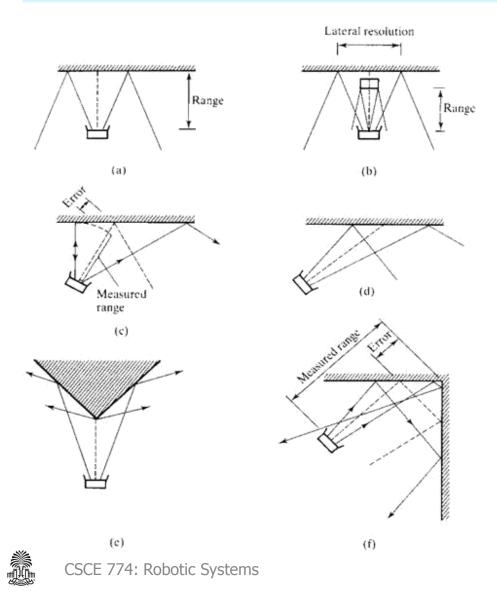




Polaroid sonar emitter/receivers

Why is sonar sensing limited to between ~12 in. and ~25 feet ?

Sonar effects



(a) Sonar providing an accurate range measurement

(b-c) Lateral resolution is not very precise; the closest object in the beam's cone provides the response

(d) Specular reflections cause walls to disappear

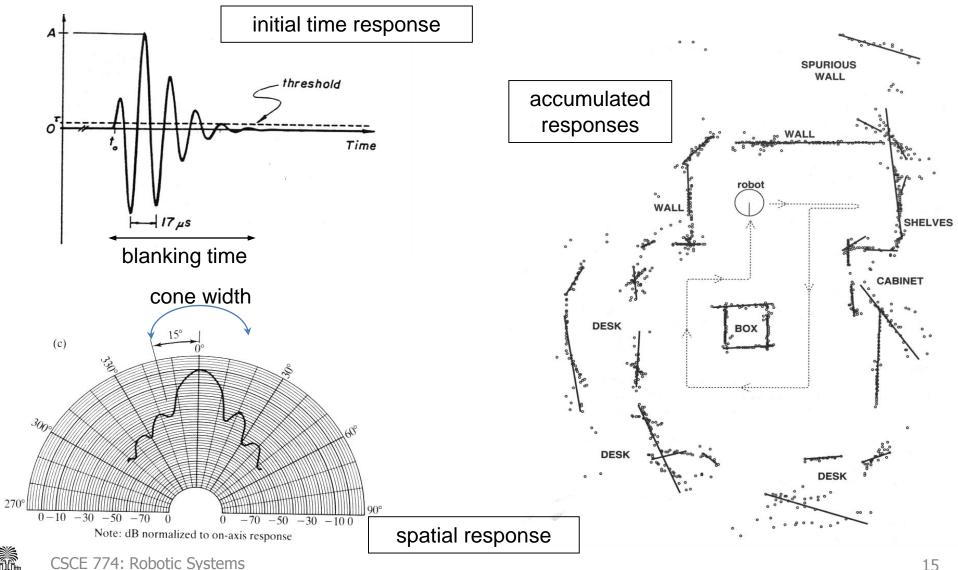
(e) Open corners produce a weak spherical wavefront

(f) Closed corners measure to the corner itself because of multiple reflections --> sonar ray tracing

resolution: time / space

14

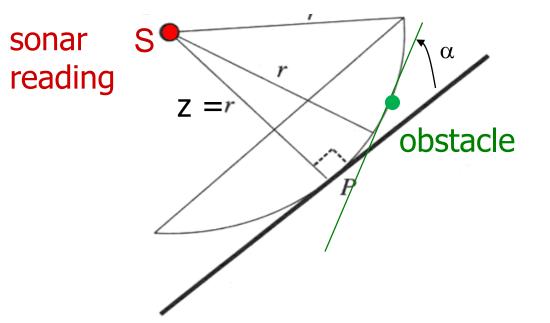
Sonar modeling



Sonar Modeling

response model (Kuc)

$$h_R(t, z, a, \alpha) = \frac{2c \cos \alpha}{\pi a \sin \alpha} \sqrt{1 - \frac{c^2(t - 2z/c)^2}{a^2 \sin^2 \alpha}}$$



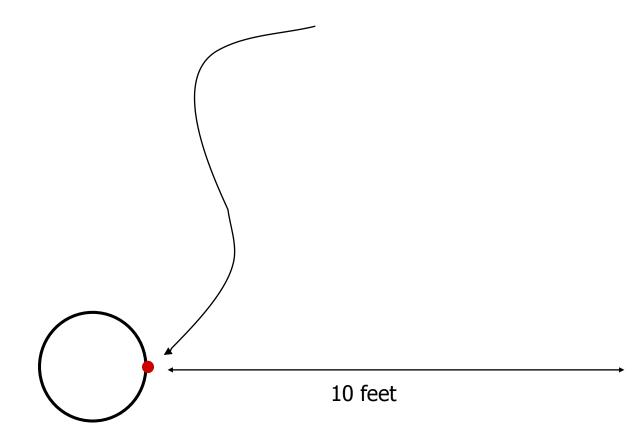
- \bullet Models the response, $h_{\rm R},$ with:
 - c = speed of sound
 - a = diameter of sonar element
 - t = time
 - z = orthogonal distance
 - α = angle of environment surface

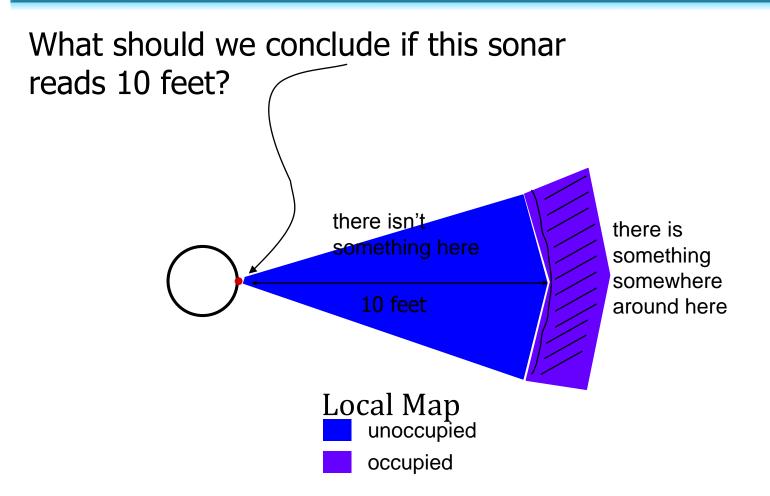
• Then, add noise to the model to obtain a probability: p(S | o)

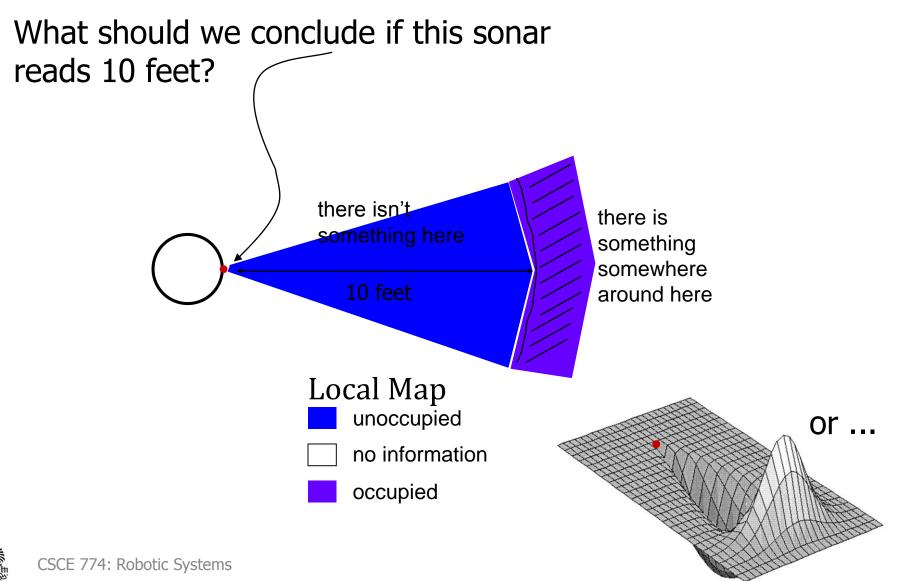
chance that the sonar reading is S,

given an obstacle at location O

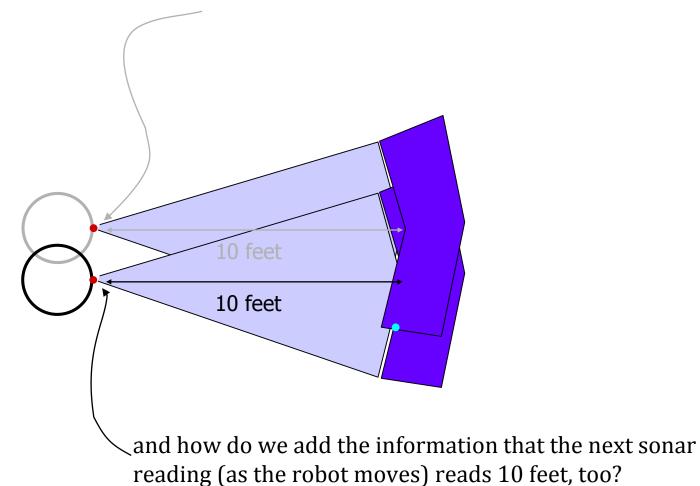
What should we conclude if this sonar reads 10 feet?





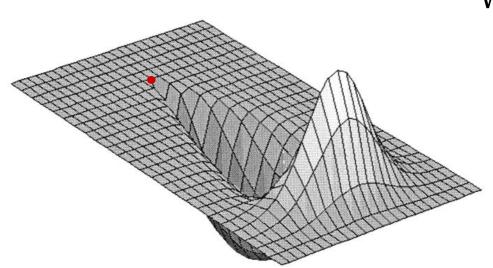


What should we conclude if this sonar reads 10 feet...



Combining sensor readings

- The key to making accurate maps is combining lots of data.
- But combining these numbers means we have to know what they are !

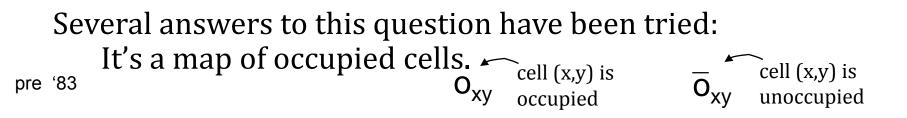


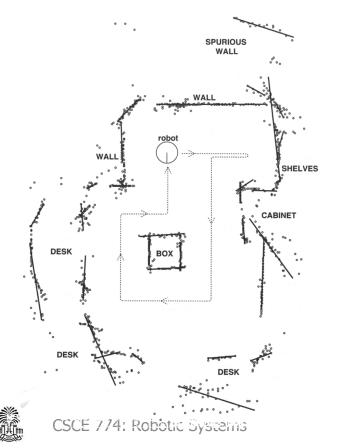
what is in each cell of this sonar model / map?

What should our map contain ?

- small cells
- each represents a bit of the robot's environment
- larger values => obstacle
- smaller values => free

What is it a map of?



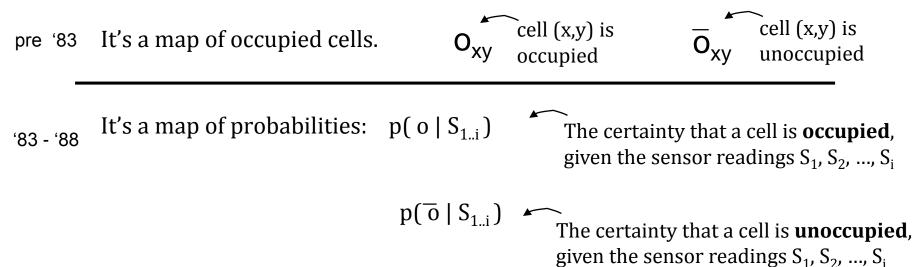


Each cell is either occupied or unoccupied -- this was the approach taken by the Stanford Cart.

What information **should** this map contain, given that it is created with sonar ?

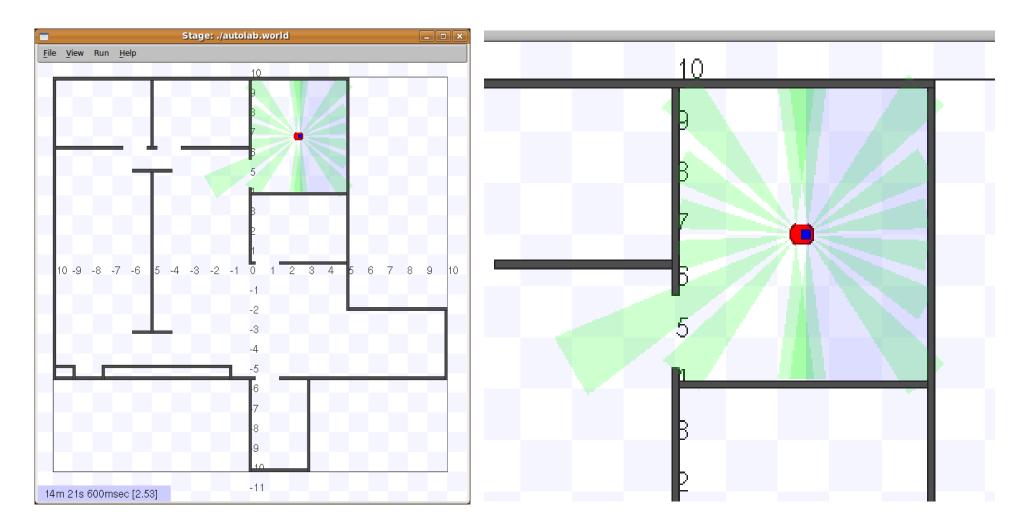
What is it a map of ?

Several answers to this question have been tried:

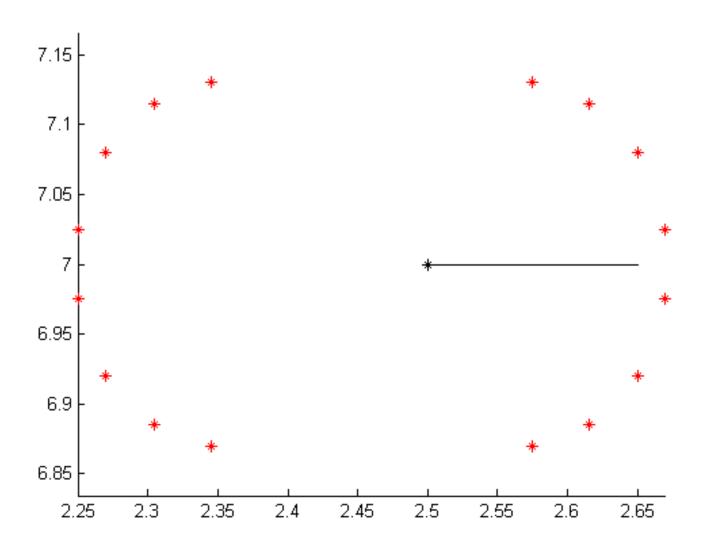


- maintaining related values separately?
- initialize all certainty values to zero
- contradictory information will lead to both values near 1
- combining them takes some work...

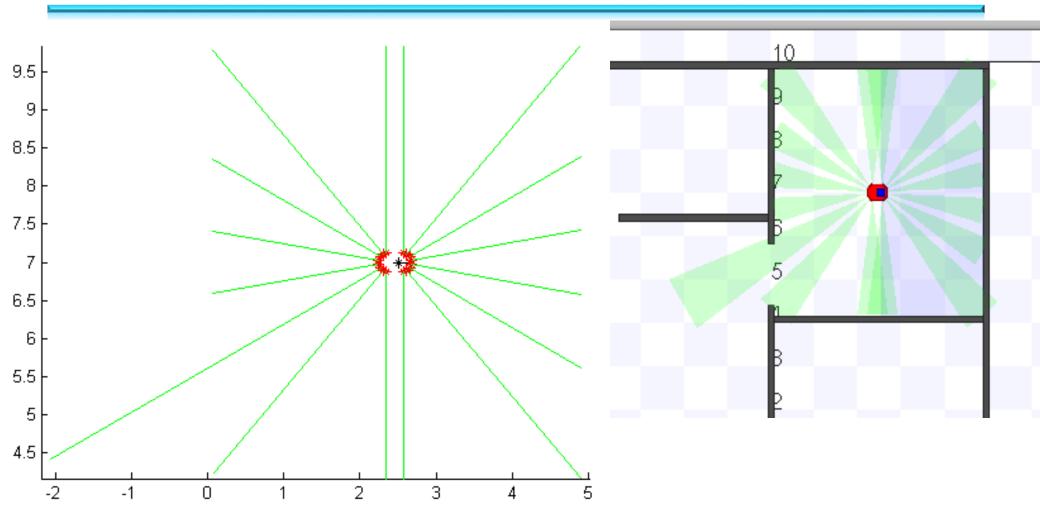
Sonars from P/S



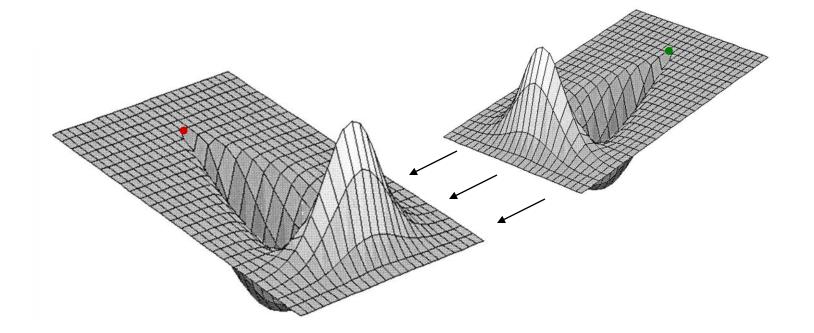
Sonar Locations Pioneer 3DX Robot



Sonar Data Calculation

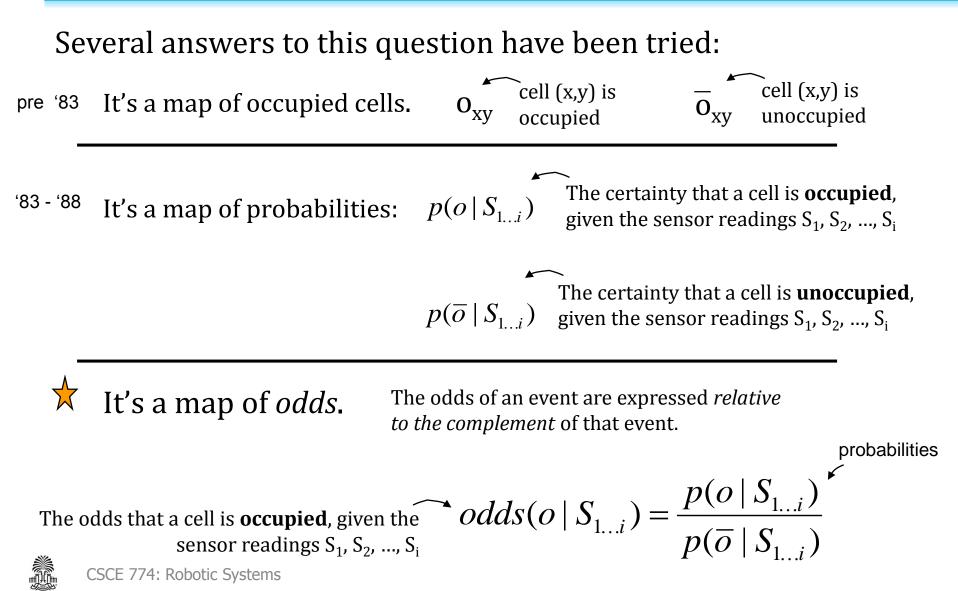


Combining probabilities

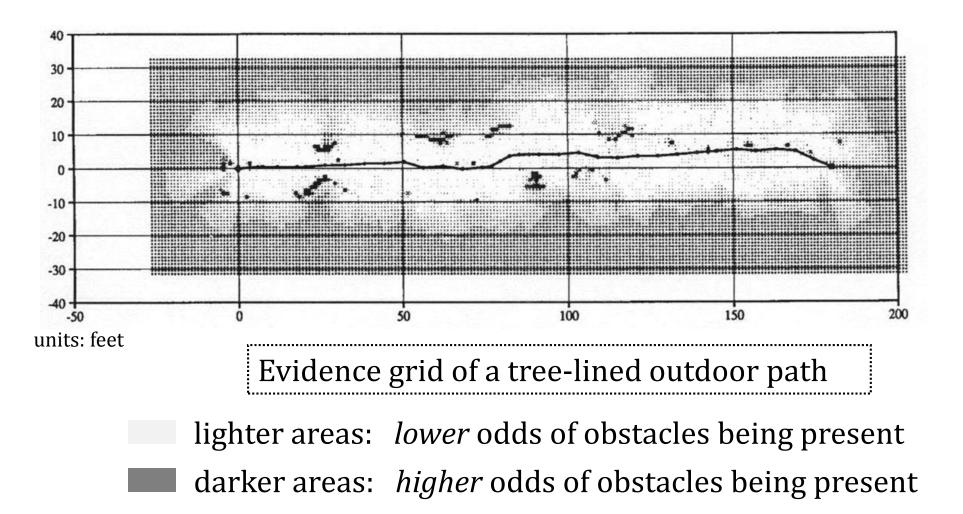


How to combine two sets of probabilities into a single map?

What is it a map of ?



An example map



Conditional probability

Some intuition...

	The probability of event o , given event S .				
p(o S) =	The probability that a certain cell ${f o}$ is occupied, given that the robot sees the sensor reading ${f S}$.				
p(S o) =	The probability of event S , given event o .				
$D \cup O \cup D =$					

- •What is really meant by conditional probability ?
- •How are these two probabilities related?

- Conditional probabilities

 $p(o \land S) = p(o \mid S) p(S)$

- Conditional probabilities

$$p(o \wedge S) = p(o \mid S) p(S)$$

- Bayes rule relates conditional probabilities

$$p(o \mid S) = \frac{p(S \mid o)p(o)}{p(S)}$$
Bay

Bayes rule

- Conditional probabilities

$$p(o \wedge S) = p(o \mid S)p(S)$$

- Bayes rule relates conditional probabilities

$$p(o \mid S) = \frac{p(S \mid o) p(o)}{p(S)}$$
Bayes rule

- So, what does this say about odds($o \mid S_2 \land S_1$) ?

Can we update easily ?

Combining evidence

So, how do we combine evidence to create a map?

 $\begin{array}{ll} \mbox{What we want --} & & \mbox{the new value of a cell in the map} \\ \mbox{odds(o | S_2 \land S_1)} & & \mbox{the new value of a cell in the map} \\ \mbox{after the sonar reading } S_2 \end{array} \\ \mbox{What we know --} & & \mbox{the old value of a cell in the map} \\ \mbox{odds(o | S_1)} & & \mbox{the old value of a cell in the map} \\ \mbox{(before sonar reading } S_2) \end{array} \\ \mbox{p(S_i | o) & p(S_i | \overline{o})} & & \mbox{the probabilities that a certain obstacle} \\ \mbox{causes the sonar reading } S_i \end{array}$

Combining evidence

$$odds(o \mid S_2 \land S_1) = \frac{p(o \mid S_2 \land S_1)}{p(\overline{o} \mid S_2 \land S_1)}$$

Combining evidence

definition of odds

$$odds(o \mid S_2 \land S_1) = \frac{p(o \mid S_2 \land S_1)}{p(\overline{o} \mid S_2 \land S_1)}$$
$$= \frac{p(S_2 \land S_1 \mid o) p(o)}{p(S_2 \land S_1 \mid \overline{o}) p(\overline{o})}$$

Combining evidence

$$odds(o \mid S_2 \land S_1) = \frac{p(o \mid S_2 \land S_1)}{p(\overline{o} \mid S_2 \land S_1)}$$
$$= \frac{p(S_2 \land S_1 \mid o) p(o)}{p(S_2 \land S_1 \mid \overline{o}) p(\overline{o})}$$
$$= \frac{p(S_2 \mid o) p(S_1 \mid o) p(o)}{p(S_2 \mid \overline{o}) p(S_1 \mid \overline{o}) p(\overline{o})}$$

definition of odds

Bayes' rule (+)

Combining evidence

$$odds(o \mid S_2 \land S_1) = \frac{p(o \mid S_2 \land S_1)}{p(\overline{o} \mid S_2 \land S_1)}$$

 $=\frac{p(S_2 \wedge S_1 \mid o) p(\overline{o})}{p(S_2 \wedge S_1 \mid \overline{o}) p(o)}$

definition of odds

$$= \frac{p(S_2 \mid o) p(S_1 \mid o) p(\overline{o})}{p(S_2 \mid \overline{o}) p(S_1 \mid \overline{o}) p(o)}$$

 $\begin{array}{l} \text{conditional} \\ \text{independence of} \\ S_1 \text{ and } S_2 \end{array}$

$$= \frac{p(S_2 \mid o) p(o \mid S_1)}{p(S_2 \mid \overline{o}) p(\overline{o} \mid S_1)}$$

Bayes' rule (+)

Combining evidence

$$odds(o \mid S_2 \land S_1) = \frac{p(o \mid S_2 \land S_1)}{p(\overline{o} \mid S_2 \land S_1)}$$
 definition of odds

$$= \frac{p(S_2 \land S_1 \mid o) p(o)}{p(S_2 \land S_1 \mid \overline{o}) p(\overline{o})}$$
Bayes' rule (+)

$$= \frac{p(S_2 \mid o) p(S_1 \mid o) p(o)}{p(S_2 \mid \overline{o}) p(S_1 \mid \overline{o}) p(\overline{o})}$$
conditional
independence of

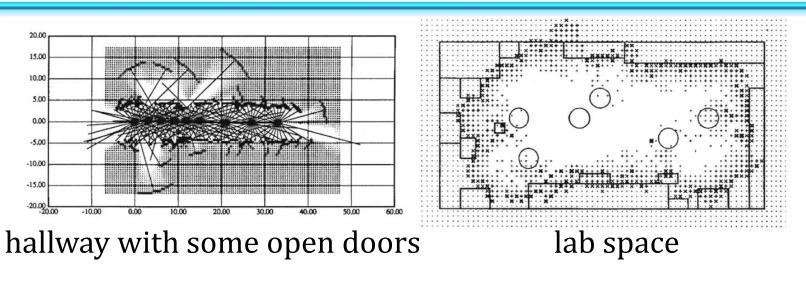
$$S_1 \text{ and } S_2$$

$$= \underbrace{\frac{p(S_2 \mid o) p(o \mid S_1)}{p(S_2 \mid \overline{o}) p(\overline{o} \mid S_1)}}_{p(\overline{o} \mid S_1)}$$
Bayes' rule (+)
previous odds

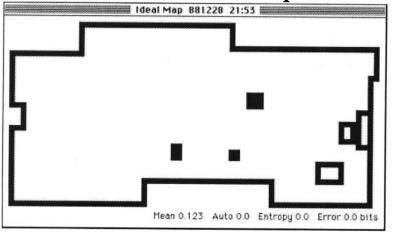
the sensor model

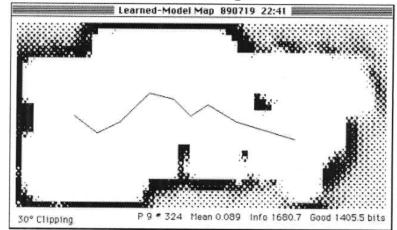
Update step = multiplying the previous odds by a precomputed weight.

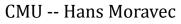
Evidence grids



known map and estimated evidence grid



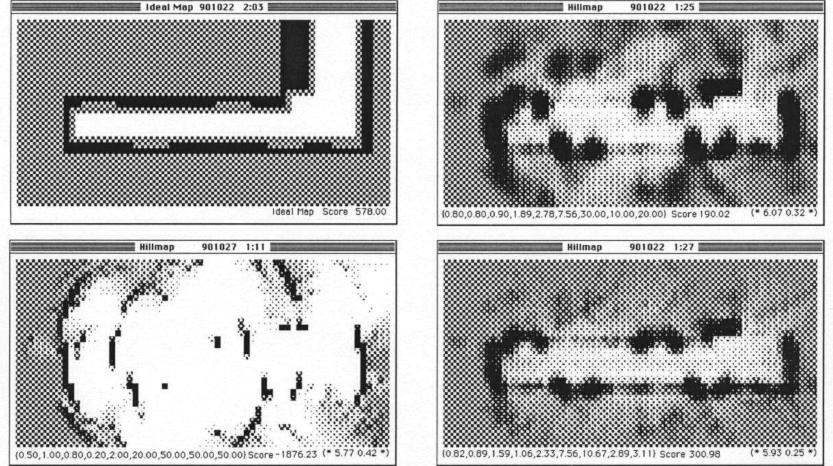




Learning the Sensor Model

The sonar model depends dramatically on the environment -- we'd like to *learn* an appropriate sensor model

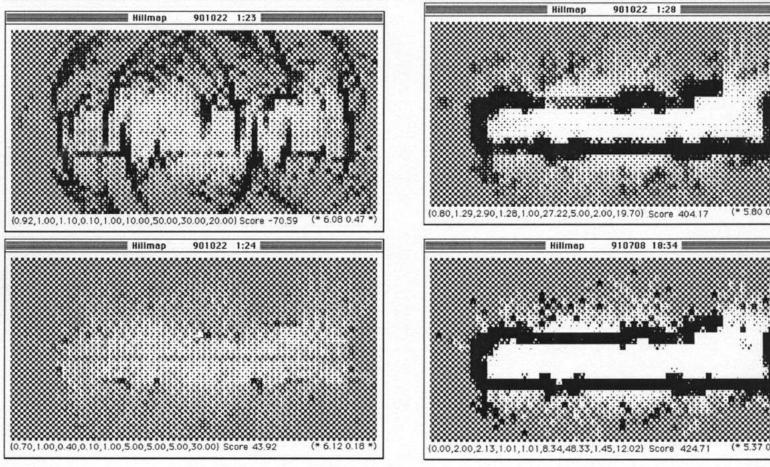
rather than hire Roman Kuc to develop another one...



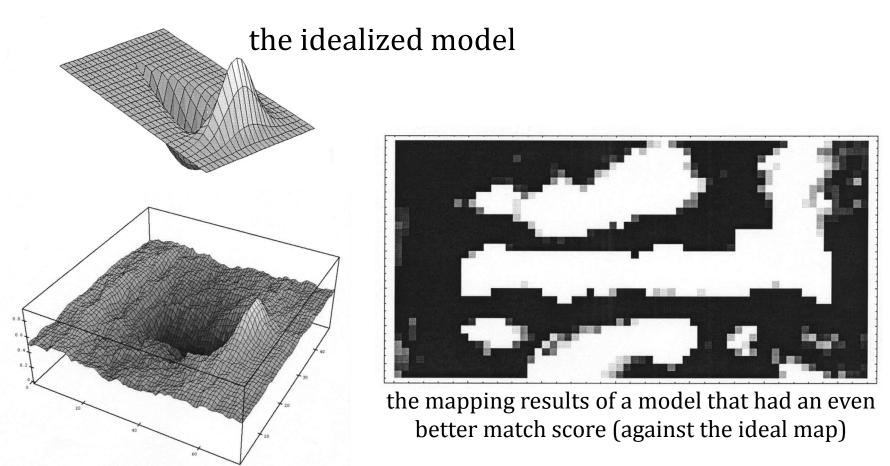
Learning the Sensor Model

The sonar model depends dramatically on the environment -- we'd like to *learn* an appropriate sensor model

rather than hire Roman Kuc to develop another one...



Learning the Sensor Model

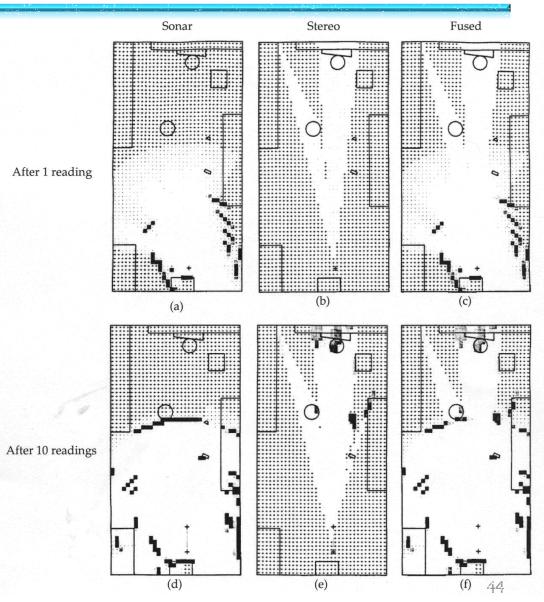


part of the learned model

Sensor fusion

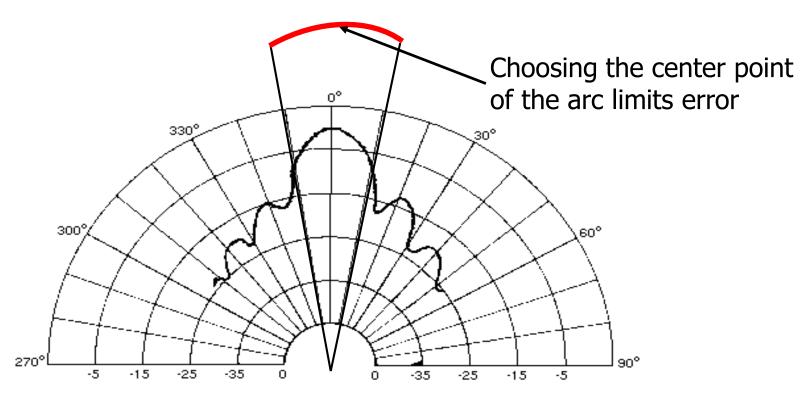
Incorporating data from other sensors -- e.g., IR rangefinders and stereo vision...

- (1) create another sensor model
- (2) update along with the sonar



Centerline

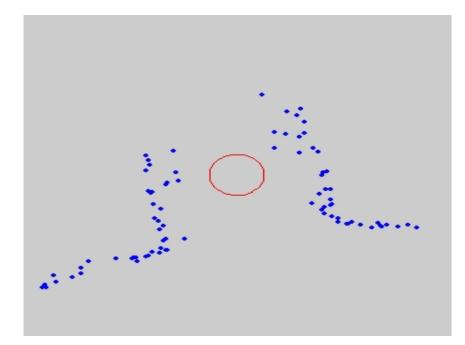
- Only consider region of significant response
- Approximate response with an arc of uniform probability



Centerline

- Advantages
 - Minimal computation required per sonar reading
 - Low latency
- Disadvantages
 - Inaccurate
 - Open areas may appear occluded

only centerline points displayed

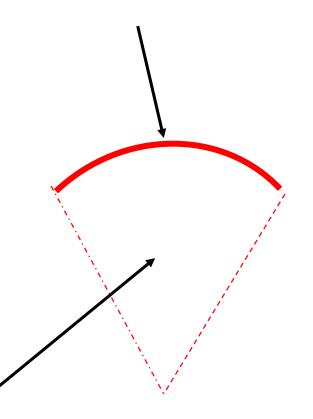


Fusing Multiple Readings

- Regions of Constant Depth (RCDs)
 - Leonard et al. 1995
- Arc Tangents
 - McKerrow 1993
- Arc Transversal Median (ATM)
 - Choset and Nagatani 1999
- Line Fitting
 - MacKenzie and Dudek 1994

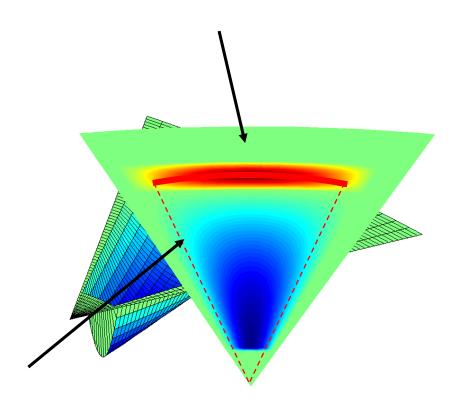
Arc Carving Sonar Model

- Represents a sonar return as a cone with an arc base
 - The arc approximates the sonar response
 - The interior of the cone represents a region of likely freespace



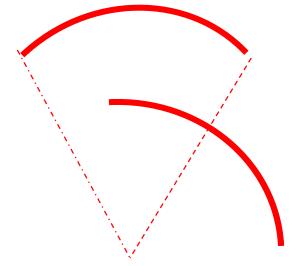
Occupancy Grid Sonar Model

- The arc carving model may be viewed as a binary approximation of the model used by Moravec and Elfes
 - An Arc with nonzero probability of occupancy
 - A cone with nonzero probability of freespace



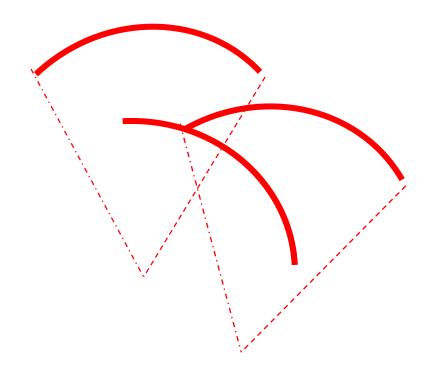
Arc Carving

- Each new sonar reading is checked against a history of previous readings
- If an arc is overlapped by the interior of a newer cone, the arc is "carved" to reflect this new information
- The updated arc is smaller, and therefore has a smaller bound on the error

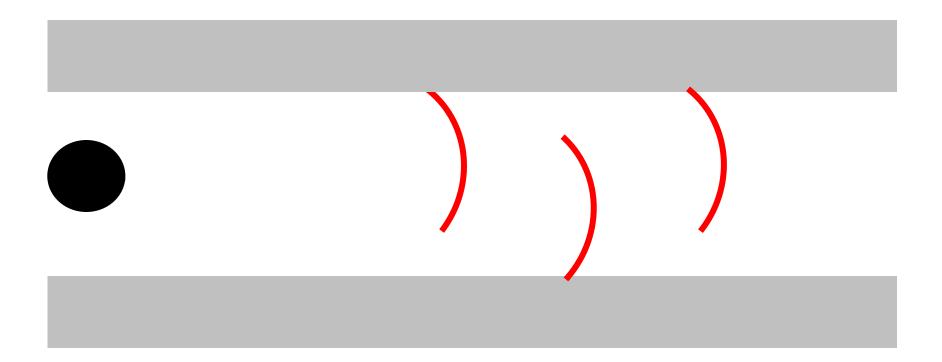


Arc Carving

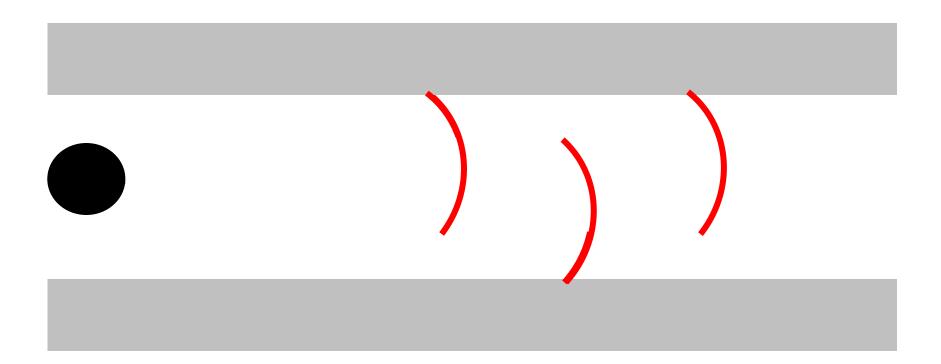
- Multiple passes of Arc Carving may completely remove an arc
 - Spurious sonar readings are removed
 - Response to dynamic environments is increased



Example – Ordinary Centerline

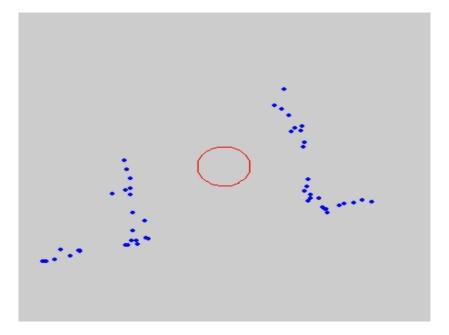


Example – Arc Carving

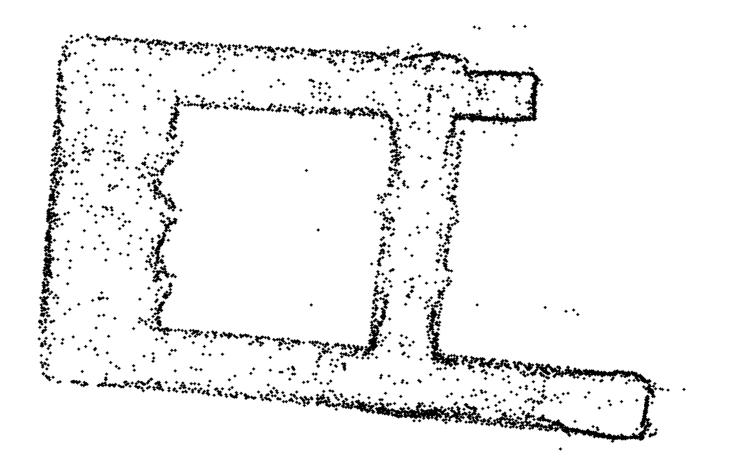


Arc Carving Video

- Latency issues are avoided
- The readings are more accurate than centerline
- Multiple reading approaches can be run off of the carved data



Experimental Results: Centerline Map



Experimental Results: Arc Carving Map

