

UNIVERSITY OF

CSCE 774 ROBOTIC SYSTEMS

Configuration Space

Ioannis Rekleitis

Configuration Space

Configuration Space

Definition

- A robot configuration is a specification of the positions of all robot points relative to a fixed coordinate system
- Usually a configuration is expressed as a "vector" of position/orientation parameters

What is a Path?

What is a Path?

Tool: Configuration Space (C-Space C)

Tool: Configuration Space (C-Space C)

CSCE-774 Robotic Systems

Tool: Configuration Space (C-Space C)

Configuration Space of a Robot

Space of all its possible configurations

But the topology of this space is usually not that of a Cartesian space

Configuration Space of a Robot

- Space of all its possible configurations
 But the topology of this space is usually
 - not that of a Cartesian space

Configuration Space of a Robot

Space of all its possible configurations
 But the topology of this space is usually not that of a Cartesian space

Structure of Configuration Space

It is a manifold

For each point q, there is a 1-to-1 map between a neighborhood of q and a Cartesian space \mathbb{R}^n , where n is the dimension of C

This map is a local coordinate system called a chart.

C can always be covered by a finite number of charts. Such a set is called an atlas

- 3-parameter representation: $q = (x, y, \theta)$ with $\theta \in [0, 2\pi)$. Two charts are needed
- Other representation: q = (x,y,cosθ,sinθ)
 →c-space is a 3-D cylinder R² x S¹
 embedded in a 4-D space

Rigid Robot in 3-D Workspace

• $q = (x, y, z, \alpha, \beta, \gamma)$

The c-space is a 6-D space (manifold) embedded in a 12-D Cartesian space. It is denoted by $R^3 \times SO(3)$

• Other representation: $q = (x,y,z,r_{11},r_{12},...,r_{33})$ where r_{11} , r_{12} , ..., r_{33} are the elements of rotation matrix R:

with:
$$\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

-
$$r_{i1}^2 + r_{i2}^2 + r_{i3}^2 = 1$$

- $r_{i1}r_{j1} + r_{i2}r_{2j} + r_{i3}r_{j3} = 0$
- $det(R) = +1$

Parameterization of SO(3)

A welding robot

CSCE-774 Robotic Systems

A Stuart Platform

Barrett WAM arm

Barrett WAM arm on a mobile platform

Configuration Space Obstacle

Reference *configuration*

How do we get from A to B?

Two link path

Thanks to Ken Goldberg

2D Rigid Object

The Configuration Space

Moving a piano

Parameterization of Torus

Metric in Configuration Space

A metric or distance function d in C is a map d: $(q_1,q_2) \in C^2 \rightarrow d(q_1,q_2) \geq 0$ such that:

- $d(q_1,q_2) = 0$ if and only if $q_1 = q_2$
- $d(q_1,q_2) = d(q_2,q_1)$
- $d(q_1,q_2) \leq d(q_1,q_3) + d(q_3,q_2)$

Metric in Configuration Space Example:

- Robot A and point x of A
- x(q): location of x in the workspace when A is at configuration q
- A distance d in C is defined by: d(q,q') = max_{x∈A} ||x(q)-x(q')||

where ||a - b|| denotes the Euclidean distance between points a and b in the workspace

Obstacles in C-Space

- A configuration q is collision-free, or free, if the robot placed at q has null intersection with the obstacles in the workspace
- □ The free space F is the set of free configurations
- A C-obstacle is the set of configurations where the robot collides with a given workspace obstacle
- □ A configuration is semi-free if the robot at this configuration touches obstacles without overlap

Disc Robot in 2-D Workspace

Rigid Robot Translating in 2-D $CB = B \ominus A = \{b-a \mid a \in A, b \in B\}$

CSCE-774 Robotic Systems

Linear-Time Computation of C-Obstacle in 2-D

Rigid Robot Translating and Rotating in 2-D

Free and Semi-Free Paths

- A free path lies entirely in the free space F
- A semi-free path lies entirely in the semi-free space

Remarks on Free-Space Topology

- The robot and the obstacles are modeled as closed subsets, meaning that they contain their boundaries
- One can show that the C-obstacles are closed subsets of the configuration space C as well
- Consequently, the free space F is an open subset of C.
 Hence, each free configuration is the center of a ball of non-zero radius entirely contained in F
- The semi-free space is a closed subset of C. Its boundary is a superset of the boundary of F

 \bigcirc

Notion of Homotopic Paths

Two paths with the same endpoints are homotopic if one can be continuously deformed into the other

R x S¹ example:

τ₁ and τ₂ are homotopic
 τ₁ and τ₃ are not homotopic
 In this example, infinity of homotopy classes

Connectedness of C-Space

- C is connected if every two configurations can be connected by a path
- C is simply-connected if any two paths connecting the same endpoints are homotopic Examples: R² or R³
- Otherwise C is multiply-connected Examples: S¹ and SO(3) are multiply- connected:
 - In S¹, infinity of homotopy classes
 - In SO(3), only two homotopy classes

Classes of Homotopic Free Paths

Probabilistic Roadmaps PRMs

Rapidly-exploring Random Trees

- A point P in C is randomly chosen.
- The nearest vertex in the RRT is selected.
- A new edge is added from this vertex in the direction of P, at distance ε.
- The further the algorithm goes, the more space is covered.

Vertex randomly drawn

 \bigcirc

Nearest vertex

Vertex randomly drawn

The vertex is in Cfree ε New vertex

And it continues...

RRT-Connect

• We grow two trees, one from the beginning vertex and another from the end vertex

• Each time we create a new vertex, we try to greedily connect the two trees

Random vertex

CSCE-774 Robotic Systems

 \bigcirc

Obstacle found !

Now we swap roles !

We grow the bottom tree

Now we greedily try to connect

And we continue...

An RRT in 2D

Example from: http://msl.cs.uiuc.edu/rrt/gallery_2drrt.html

A Puzzle solved using RRTs

The goal is the separate the two bars from each other. You might have seen a puzzle like this before. The example was constructed by Boris Yamrom, GE Corporate Research & Development Center, and posted as a research benchmark by Nancy Amato at Texas A&M University. It has been cited in many places as a one of the most challenging motion planning examples. In 2001, it was solved by using a balanced bidirectional RRT, developed by James Kuffner and Steve LaValle. There are no special heuristics or parameters that were tuned specifically for this problem. On a current PC (circa 2003), it consistently takes a few minutes to solve.

model by DSMFT group, Texas A&M Univ. original model by Boris Yamrom, GE

Lunar Landing

The following is an open loop trajectory that was planned in a 12-dimensional state space. The video shows an X-Wing fighter that must fly through structures on a lunar base before entering the hangar. This result was presented by Stevie Rabail Systems Kuffner at the Workshop on the Algorithmic Foundations of Robotics, 2000.