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Definition

A robot configuration is a specification 
of the positions of all robot points 
relative to a fixed coordinate system

Usually a configuration is expressed as 
a “vector” of position/orientation 
parameters
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What is a Path?

qgoal
qinit

qgoal

qinit

CSCE-774 Robotic Systems



What is a Path?
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Tool: Configuration Space
(C-Space C)
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Articulated Robot Example

q1

q2

q = (q1,q2,…,q10)
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Configuration Space of a Robot

Space of all its possible configurations

But the topology of this space is usually 
not that of a Cartesian space

C = S1 x S1
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Structure of Configuration Space

It is a manifold
For each point q, there is a 1-to-1 map 
between a neighborhood of q and a 
Cartesian space Rn, where n is the 
dimension of C

This map is a local coordinate system 
called a chart. 
C can always be covered by a finite number 
of charts. Such a set is called an atlas
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Example
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reference point

Case of a Planar Rigid Robot

• 3-parameter representation: q = (x,y,q)
with q  [0,2p). Two charts are needed

• Other representation: q = (x,y,cosq,sinq)
c-space is a 3-D cylinder R2 x S1

embedded in a 4-D space

x

y
q

robot
reference direction

workspace
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Rigid Robot in 3-D Workspace

• q = (x,y,z,a,b,g)

• Other representation: q = (x,y,z,r11,r12,…,r33) where r11, 
r12, …, r33 are the elements of rotation matrix R:

r11 r12 r13
r21 r22 r23
r31 r32 r33

with:
– ri1

2+ri2
2+ri3

2 = 1
– ri1rj1 + ri2r2j + ri3rj3 = 0
– det(R) = +1

The c-space is a 6-D space (manifold) embedded 
in a 12-D Cartesian space. It is denoted by R3xSO(3)
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Parameterization of SO(3)

• Euler angles: (f,q,y)

• Unit quaternion:
(cos q/2, n1 sin q/2, n2 sin q/2, n3 sin q/2)
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A welding robot
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A Stuart Platform
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Barrett WAM arm
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Barrett WAM arm on a mobile platform
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Configuration Space Obstacle
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Two link path
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2D Rigid Object
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The Configuration Space
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Moving a piano
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Parameterization of Torus
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Metric in Configuration Space

A metric or distance function d in C is a map 
d:  (q1,q2)  C2

 d(q1,q2) > 0
such that:

– d(q1,q2) = 0 if and only if q1 = q2 

– d(q1,q2) = d (q2,q1)

– d(q1,q2) < d(q1,q3) + d(q3,q2)
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Metric in Configuration Space
Example:
• Robot A and point x of A

• x(q): location of x in the workspace when A is 
at configuration q

• A distance d in C is defined by:
d(q,q’) = maxxA ||x(q)-x(q’)||

where ||a - b|| denotes the Euclidean distance 
between points a and b in the workspace
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Obstacles in C-Space
A configuration q is collision-free, or free, if 

the robot placed at q has null intersection with 
the obstacles in the workspace

The free space F is the set of free 
configurations

A C-obstacle is the set of configurations where 
the robot collides with a given workspace 
obstacle

A configuration is semi-free if the robot at this 
configuration touches obstacles without overlap 
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Disc Robot in 2-D Workspace
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Rigid Robot Translating in 2-D

CB = B  A = {b-a | aA, bB}

a1

b1

b1-a1
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Linear-Time Computation of 
C-Obstacle in 2-D

(convex polygons)
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Rigid Robot Translating and 
Rotating in 2-D
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Free and Semi-Free Paths

 A free path lies entirely in the free 
space F

 A semi-free path lies entirely in the 
semi-free space
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Remarks on Free-Space Topology

• The robot and the obstacles are modeled as closed
subsets, meaning that they contain their boundaries

• One can show that the C-obstacles are closed subsets of 
the configuration space C as well

• Consequently, the free space F is an open subset of C. 
Hence, each free configuration is the center of a ball of 
non-zero radius entirely contained in F

• The semi-free space is a closed subset of C. Its 
boundary is a superset of the boundary of F
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Notion of Homotopic Paths
Two paths with the same endpoints are 
homotopic if one can be continuously deformed 
into the other

R x S1 example:

t1 and t2 are homotopic

t1 and t3 are not homotopic

In this example, infinity of homotopy classes

q

q’

t1
t2

t3
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Connectedness of C-Space
C is connected if every two configurations can 
be connected by a path

C is simply-connected if any two paths 
connecting the same endpoints are homotopic
Examples: R2 or R3

Otherwise C is multiply-connected
Examples: S1 and SO(3) are multiply- connected:
- In S1, infinity of homotopy classes
- In SO(3), only two homotopy classes
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Classes of Homotopic Free Paths
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Probabilistic Roadmaps PRMs
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Rapidly-exploring Random Trees

• A point P in C is randomly chosen.

• The nearest vertex in the RRT is selected.

• A new edge is added from this vertex in the 

direction of P, at distance .

• The further the algorithm goes, the more 

space is covered.
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Rapidly-expanding Random Trees

Starting vertex
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Rapidly-expanding Random Trees

Vertex randomly drawn
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Rapidly-expanding Random Trees

Nearest vertex
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Rapidly-expanding Random Trees

New vertex

The vertex is in Cfree
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Rapidly-expanding Random Trees

Vertex randomly drawn
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Rapidly-expanding Random Trees

Nearest point
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Rapidly-expanding Random Trees

New vertex

The vertex is in Cfree
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Rapidly-expanding Random Trees
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Rapidly-expanding Random Trees
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Rapidly-expanding Random Trees

Nearest vertex
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Rapidly-expanding Random Trees

New vertex
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Rapidly-expanding Random Trees

And it continues…
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RRT-Connect

• We grow two trees, one from the beginning 

vertex and another from the end vertex

• Each time we create a new vertex, we try to 

greedily connect the two trees
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RRT-Connect: example
Start

Goal
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RRT-Connect: example

Random vertex
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RRT-Connect: example
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RRT-Connect: example

We greedily connect the 

bottom tree to our new 

vertex
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RRT-Connect: example
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RRT-Connect: example
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RRT-Connect: example
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RRT-Connect: example

Obstacle found !
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RRT-Connect: example

Now we swap roles !
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RRT-Connect: example

Now we swap roles !
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RRT-Connect: example

We grow the bottom tree
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RRT-Connect: example

Now we greedily try to connect

And we continue…
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RRT-Connect: example
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RRT-Connect: example
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RRT-Connect: example
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RRT-Connect: example
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RRT-Connect: example
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RRT-Connect: example

Connection made !
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RRT-Connect: example

Now we have a solution !
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RRT-Connect: example

Last step: path smoothing

CSCE-774 Robotic Systems



RRT-Connect: example

Last step: path smoothing
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An RRT in 2D

Example from: http://msl.cs.uiuc.edu/rrt/gallery_2drrt.html
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A Puzzle solved using RRTs
The goal is the separate the two 

bars from each other. You might 

have seen a puzzle like this 

before. The example was 

constructed by Boris Yamrom, 

GE Corporate Research & 

Development Center, and posted 

as a research benchmark by 

Nancy Amato at Texas A&M 

University. It has been cited in 

many places as a one of the most 

challenging motion planning 

examples. In 2001, it was solved 

by using a balanced bidirectional 

RRT, developed by James 

Kuffner and Steve LaValle. There 

are no special heuristics or 

parameters that were tuned 

specifically for this problem. On 

a current PC (circa 2003), it 

consistently takes a few minutes 

to solve. 
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Lunar Landing

The following is an open loop trajectory that was planned in a 12-dimensional state space. The 

video shows an X-Wing fighter that must fly through structures on a lunar base before entering 

the hangar. This result was presented by Steve LaValle and James Kuffner at the Workshop on 

the Algorithmic Foundations of Robotics, 2000. 
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