CSCE 774 ROBOTIC SYSTEMS

Configuration Space

Configuration Space

Free Space

Obstacles

Configuration Space

Free Space

Obstacles

Robot
(treat as point object)

Definition

A robot configuration is a specification of the positions of all robot points relative to a fixed coordinate system

E Usually a configuration is expressed as a "vector" of position/orientation parameters

What is a Path?

$\cdot{ }^{\cdot} q_{\text {init }}$
${ }^{q_{\text {goal }}}$

CSCE-774 Robotic Systems

What is a Path?

CSCE-774 Robotic Systems

Tool: Configuration Space (C-Space C)

Tool: Configuration Space (C-Space C)

Tool: Configuration Space (C-Space C)

Articulated Robot Example

$$
q=\left(q_{1}, q_{2}, \ldots, q_{10}\right)
$$

Configuration Space of a Robot

E Space of all its possible configurations

- But the topology of this space is usually not that of a Cartesian space

Configuration Space of a Robot

E Space of all its possible configurations - But the topology of this space is usually not that of a Cartesian space

CSCE-774 Robotic Systems

Configuration Space of a Robot

E Space of all its possible configurations - But the topology of this space is usually not that of a Cartesian space

CSCE-774 Robotic Systems

Structure of Configuration Space

-It is a manifold
For each point q, there is a 1-to-1 map between a neighborhood of q and a Cartesian space \mathbf{R}^{n}, where n is the dimension of C

- This map is a local coordinate system called a chart.
C can always be covered by a finite number of charts. Such a set is called an atlas

Example

Case of a Planar Rigid Robot

- 3-parameter representation: $q=(x, y, \theta)$ with $\theta \in[0,2 \pi)$. Two charts are needed
- Other representation: $q=(x, y, \cos \theta, \sin \theta)$ $\rightarrow c$-space is a 3-D cylinder $\mathrm{R}^{2} \times \mathrm{S}^{1}$ embedded in sce $4-$ - spowace

Rigid Robot in 3-D Workspace

- $q=(x, y, z, \alpha, \beta, \gamma)$

The c-space is a 6-D space (manifold) embedded in a 12-D Cartesian space. It is denoted by $\mathrm{R}^{3} \times S O(3)$

- Other representation: $q=\left(x, y, z, r_{11}, r_{12}, \ldots, r_{33}\right)$ where r_{11}, r_{12}, \ldots, r_{33} are the elements of rotation matrix R :

$$
\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)
$$

$-r_{i 1}^{2}+r_{i 2}^{2}+r_{i 3}^{2}=1$
$-r_{i 1} r_{j 1}+r_{i 2} r_{2 j}+r_{i 3} r_{j 3}=0$
$-\operatorname{det}(R)=+1$

Parameterization of SO(3)

- Euler angles: $(\phi, \theta, \psi)_{z}$

- Unit quaternion: ${ }^{x}$

A welding robot

A Stuart Platform

Barrett WAM arm

Barrett WAM arm on a mobile platform

Configuration Space Obstacle

Reference configuration
How do we get from A to B ?

An obstacle in the robot's workspace
The C-space representation of this obstacle...

Two link path

Thanks to Ken Goldberg

2D Rigid Object

The Configuration Space

Moving a piano

Parameterization of Torus

(a)

(b)

(c)
$\left(\theta_{1}, \theta_{2}\right) \in \mathbb{R}^{2}$
problems at $\theta_{i}=\{0,2 \pi\}$.

Metric in Configuration Space

A metric or distance function d in C is a map

$$
d:\left(q_{1}, q_{2}\right) \in C^{2} \rightarrow d\left(q_{1}, q_{2}\right) \geq 0
$$

such that:
$-d\left(q_{1}, q_{2}\right)=0$ if and only if $q_{1}=q_{2}$
$-d\left(q_{1}, q_{2}\right)=d\left(q_{2}, q_{1}\right)$
$-d\left(q_{1}, q_{2}\right) \leq d\left(q_{1}, q_{3}\right)+d\left(q_{3}, q_{2}\right)$

Metric in Configuration Space

Example:

- Robot A and point x of A
- $x(q)$: location of x in the workspace when A is at configuration q
- A distance d in C is defined by:

$$
d\left(q, q^{\prime}\right)=\max _{x \in A}\left\|x(q)-x\left(q^{\prime}\right)\right\|
$$

where $|\mid a-b \|$ denotes the Euclidean distance between points a and b in the workspace

Obstacles in C-Space

-A configuration q is collision-free, or free, if the robot placed at q has null intersection with the obstacles in the workspace
\square The free space F is the set of free configurations
-A C-obstacle is the set of configurations where the robot collides with a given workspace obstacle
\square A configuration is semi-free if the robot at this configuration touches obstacles without overlap

Disc Robot in 2-D Workspace

CSCE-774 Robotic Systems

Rigid Robot Translating in 2-D

$$
C B=B \ominus A=\{b-a \mid a \in A, b \in B\}
$$

CSCE-774 Robotic Systems

Linear-Time Computation of C-Obstacle in 2-D

Rigid Robot Translating and Rotating in 2-D

Free and Semi-Free Paths

- A free path lies entirely in the free space F
- A semi-free path lies entirely in the semi-free space

Remarks on Free-Space Topology

- The robot and the obstacles are modeled as closed subsets, meaning that they contain their boundaries
- One can show that the C-obstacles are closed subsets of the configuration space C as well
- Consequently, the free space F is an open subset of C. Hence, each free configuration is the center of a ball of non-zero radius entirely contained in F
- The semi-free space is a closed subset of C. Its boundary is a superset of the boundary of F

CSCE-774 Robotic Systems

Notion of Homotopic Paths

- Two paths with the same endpoints are homotopic if one can be continuously deformed into the other
- $R \times S^{1}$ example:

- τ_{1} and τ_{2} are homotopic
- τ_{1} and τ_{3} are not homotopic
- In this example, infinity of

Connectedness of C-Space

- C is connected if every two configurations can be connected by a path
- C is simply-connected if any two paths connecting the same endpoints are homotopic Examples: \mathbf{R}^{2} or \mathbf{R}^{3}
- Otherwise C is multiply-connected Examples: S^{1} and $S O(3)$ are multiply- connected:
- In S^{1}, infinity of homotopy classes
- In SO(3), only two homotopy classes

Classes of Homotopic Free Paths

Probabilistic Roadmaps PRMs

Rapidly-exploring Random Trees

- A point P in C is randomly chosen.
- The nearest vertex in the RRT is selected.
- A new edge is added from this vertex in the direction of P , at distance ε.
- The further the algorithm goes, the more space is covered.

Rapidly-expanding Random Trees

Starting vertex

Rapidly-expanding Random Trees

Vertex randomly drawn

Rapidly-expanding Random Trees

Nearest vertex

Rapidly-expanding Random Trees

Rapidly-expanding Random Trees

Vertex randomly drawn

Rapidly-expanding Random Trees

Nearest point

Rapidly-expanding Random Trees

The vertex is in Cfree New vertex

Rapidly-expanding Random Trees

Rapidly-expanding Random Trees

Rapidly-expanding Random Trees

Rapidly-expanding Random Trees

New vertex

Rapidly-expanding Random Trees

And it continues...

RRT-Connect

- We grow two trees, one from the beginning vertex and another from the end vertex
- Each time we create a new vertex, we try to greedily connect the two trees

RRT-Connect: example

- Start

RRT-Connect: example

\bigcirc

Random vertex

RRT-Connect: example

RRT-Connect: example

We greedily connect the bottom tree to our new vertex

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

Obstacle found !

RRT-Connect: example

Now we swap roles!

RRT-Connect: example

Now we swap roles!

RRT-Connect: example

We grow the bottom tree

RRT-Connect: example

Now we greedily try to connect

And we continue...

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

Connection made!

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

An RRT in 2D

気学

Example from: http://msisics.uliuc.edulrrt/gallery_2drrt.html

A Puzzle solved using RRTs

The goal is the separate the two bars from each other. You might have seen a puzzle like this before. The example was constructed by Boris Yamrom, GE Corporate Research \& Development Center, and posted as a research benchmark by Nancy Amato at Texas A\&M University. It has been cited in many places as a one of the most challenging motion planning examples. In 2001, it was solved by using a balanced bidirectional RRT, developed by James Kuffner and Steve LaValle. There are no special heuristics or parameters that were tuned specifically for this problem. On a current PC (circa 2003), it conelistently takes a few minutes to solve.

Alpha Puzzle 1.0 Solution

 James Kuffiner. Feb. 2001
model by DSMFT मroup, Texas AdM Univ. original model by Boris Yamrom, (iF.

Lunar Landing

The following is an open loop trajectory that was planned in a 12-dimensional state space. The video shows an X -Wing fighter that must fly through structures on a lunar base before entering thet angar. This result was presented losstexne Rabdaildeyatedsames Kuffner at the Workshop on the Al Igorithmic Foundations of Robotics, 2000.

