
Ioannis Rekleitis

Configuration Space

Configuration Space

Configuration Space

Definition

A robot configuration is a specification
of the positions of all robot points
relative to a fixed coordinate system

Usually a configuration is expressed as
a “vector” of position/orientation
parameters

CSCE-774 Robotic Systems

What is a Path?

qgoal
qinit

qgoal

qinit

CSCE-774 Robotic Systems

What is a Path?

CSCE-774 Robotic Systems

Tool: Configuration Space
(C-Space C)

q1

q1

q2

q2

CSCE-774 Robotic Systems

Tool: Configuration Space
(C-Space C)

q1

q1

q2

q2

CSCE-774 Robotic Systems

Tool: Configuration Space
(C-Space C)

CSCE-774 Robotic Systems

Articulated Robot Example

q1

q2

q = (q1,q2,…,q10)

CSCE-774 Robotic Systems

Configuration Space of a Robot

Space of all its possible configurations

But the topology of this space is usually
not that of a Cartesian space

C = S1 x S1

CSCE-774 Robotic Systems

Configuration Space of a Robot

Space of all its possible configurations

But the topology of this space is usually
not that of a Cartesian space

C = S1 x S1

CSCE-774 Robotic Systems

Configuration Space of a Robot

Space of all its possible configurations

But the topology of this space is usually
not that of a Cartesian space

C = S1 x S1

CSCE-774 Robotic Systems

Structure of Configuration Space

It is a manifold
For each point q, there is a 1-to-1 map
between a neighborhood of q and a
Cartesian space Rn, where n is the
dimension of C

This map is a local coordinate system
called a chart.
C can always be covered by a finite number
of charts. Such a set is called an atlas

CSCE-774 Robotic Systems

Example

CSCE-774 Robotic Systems

reference point

Case of a Planar Rigid Robot

• 3-parameter representation: q = (x,y,q)
with q [0,2p). Two charts are needed

• Other representation: q = (x,y,cosq,sinq)
c-space is a 3-D cylinder R2 x S1

embedded in a 4-D space

x

y
q

robot
reference direction

workspace

CSCE-774 Robotic Systems

Rigid Robot in 3-D Workspace

• q = (x,y,z,a,b,g)

• Other representation: q = (x,y,z,r11,r12,…,r33) where r11,
r12, …, r33 are the elements of rotation matrix R:

r11 r12 r13
r21 r22 r23
r31 r32 r33

with:
– ri1

2+ri2
2+ri3

2 = 1
– ri1rj1 + ri2r2j + ri3rj3 = 0
– det(R) = +1

The c-space is a 6-D space (manifold) embedded
in a 12-D Cartesian space. It is denoted by R3xSO(3)

CSCE-774 Robotic Systems

Parameterization of SO(3)

• Euler angles: (f,q,y)

• Unit quaternion:
(cos q/2, n1 sin q/2, n2 sin q/2, n3 sin q/2)

x

y

z

x
y

z

f

x

y

z

q

x

y

z

y

1 2 3 4

CSCE-774 Robotic Systems

A welding robot

CSCE-774 Robotic Systems

A Stuart Platform

CSCE-774 Robotic Systems

Barrett WAM arm

CSCE-774 Robotic Systems

Barrett WAM arm on a mobile platform

CSCE-774 Robotic Systems

Configuration Space Obstacle

CSCE-774 Robotic Systems

Two link path

CSCE-774 Robotic Systems

2D Rigid Object

CSCE-774 Robotic Systems

The Configuration Space

CSCE-774 Robotic Systems

Moving a piano

CSCE-774 Robotic Systems

Parameterization of Torus

CSCE-774 Robotic Systems

Metric in Configuration Space

A metric or distance function d in C is a map
d: (q1,q2) C2

 d(q1,q2) > 0
such that:

– d(q1,q2) = 0 if and only if q1 = q2

– d(q1,q2) = d (q2,q1)

– d(q1,q2) < d(q1,q3) + d(q3,q2)

CSCE-774 Robotic Systems

Metric in Configuration Space
Example:
• Robot A and point x of A

• x(q): location of x in the workspace when A is
at configuration q

• A distance d in C is defined by:
d(q,q’) = maxxA ||x(q)-x(q’)||

where ||a - b|| denotes the Euclidean distance
between points a and b in the workspace

CSCE-774 Robotic Systems

Obstacles in C-Space
A configuration q is collision-free, or free, if

the robot placed at q has null intersection with
the obstacles in the workspace

The free space F is the set of free
configurations

A C-obstacle is the set of configurations where
the robot collides with a given workspace
obstacle

A configuration is semi-free if the robot at this
configuration touches obstacles without overlap

CSCE-774 Robotic Systems

Disc Robot in 2-D Workspace

CSCE-774 Robotic Systems

Rigid Robot Translating in 2-D

CB = B A = {b-a | aA, bB}

a1

b1

b1-a1

CSCE-774 Robotic Systems

Linear-Time Computation of
C-Obstacle in 2-D

(convex polygons)

CSCE-774 Robotic Systems

Rigid Robot Translating and
Rotating in 2-D

CSCE-774 Robotic Systems

Free and Semi-Free Paths

 A free path lies entirely in the free
space F

 A semi-free path lies entirely in the
semi-free space

CSCE-774 Robotic Systems

Remarks on Free-Space Topology

• The robot and the obstacles are modeled as closed
subsets, meaning that they contain their boundaries

• One can show that the C-obstacles are closed subsets of
the configuration space C as well

• Consequently, the free space F is an open subset of C.
Hence, each free configuration is the center of a ball of
non-zero radius entirely contained in F

• The semi-free space is a closed subset of C. Its
boundary is a superset of the boundary of F

CSCE-774 Robotic Systems

CSCE-774 Robotic Systems

CSCE-774 Robotic Systems

Notion of Homotopic Paths
Two paths with the same endpoints are
homotopic if one can be continuously deformed
into the other

R x S1 example:

t1 and t2 are homotopic

t1 and t3 are not homotopic

In this example, infinity of homotopy classes

q

q’

t1
t2

t3

CSCE-774 Robotic Systems

Connectedness of C-Space
C is connected if every two configurations can
be connected by a path

C is simply-connected if any two paths
connecting the same endpoints are homotopic
Examples: R2 or R3

Otherwise C is multiply-connected
Examples: S1 and SO(3) are multiply- connected:
- In S1, infinity of homotopy classes
- In SO(3), only two homotopy classes

CSCE-774 Robotic Systems

Classes of Homotopic Free Paths

CSCE-774 Robotic Systems

Probabilistic Roadmaps PRMs

CSCE-774 Robotic Systems

Rapidly-exploring Random Trees

• A point P in C is randomly chosen.

• The nearest vertex in the RRT is selected.

• A new edge is added from this vertex in the

direction of P, at distance .

• The further the algorithm goes, the more

space is covered.

CSCE-774 Robotic Systems

Rapidly-expanding Random Trees

Starting vertex

CSCE-774 Robotic Systems

Rapidly-expanding Random Trees

Vertex randomly drawn

CSCE-774 Robotic Systems

Rapidly-expanding Random Trees

Nearest vertex

CSCE-774 Robotic Systems

Rapidly-expanding Random Trees

New vertex

The vertex is in Cfree

CSCE-774 Robotic Systems

Rapidly-expanding Random Trees

Vertex randomly drawn

CSCE-774 Robotic Systems

Rapidly-expanding Random Trees

Nearest point

CSCE-774 Robotic Systems

Rapidly-expanding Random Trees

New vertex

The vertex is in Cfree

CSCE-774 Robotic Systems

Rapidly-expanding Random Trees

CSCE-774 Robotic Systems

Rapidly-expanding Random Trees

Vertex randomly drawn

CSCE-774 Robotic Systems

Rapidly-expanding Random Trees

Nearest vertex

CSCE-774 Robotic Systems

Rapidly-expanding Random Trees

New vertex

CSCE-774 Robotic Systems

Rapidly-expanding Random Trees

And it continues…

CSCE-774 Robotic Systems

RRT-Connect

• We grow two trees, one from the beginning

vertex and another from the end vertex

• Each time we create a new vertex, we try to

greedily connect the two trees

CSCE-774 Robotic Systems

RRT-Connect: example
Start

Goal

CSCE-774 Robotic Systems

RRT-Connect: example

Random vertex

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

We greedily connect the

bottom tree to our new

vertex

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

Obstacle found !

CSCE-774 Robotic Systems

RRT-Connect: example

Now we swap roles !

CSCE-774 Robotic Systems

RRT-Connect: example

Now we swap roles !

CSCE-774 Robotic Systems

RRT-Connect: example

We grow the bottom tree

CSCE-774 Robotic Systems

RRT-Connect: example

Now we greedily try to connect

And we continue…

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

CSCE-774 Robotic Systems

RRT-Connect: example

Connection made !

CSCE-774 Robotic Systems

RRT-Connect: example

Now we have a solution !

CSCE-774 Robotic Systems

RRT-Connect: example

Last step: path smoothing

CSCE-774 Robotic Systems

RRT-Connect: example

Last step: path smoothing

CSCE-774 Robotic Systems

An RRT in 2D

Example from: http://msl.cs.uiuc.edu/rrt/gallery_2drrt.html
CSCE-774 Robotic Systems

A Puzzle solved using RRTs
The goal is the separate the two

bars from each other. You might

have seen a puzzle like this

before. The example was

constructed by Boris Yamrom,

GE Corporate Research &

Development Center, and posted

as a research benchmark by

Nancy Amato at Texas A&M

University. It has been cited in

many places as a one of the most

challenging motion planning

examples. In 2001, it was solved

by using a balanced bidirectional

RRT, developed by James

Kuffner and Steve LaValle. There

are no special heuristics or

parameters that were tuned

specifically for this problem. On

a current PC (circa 2003), it

consistently takes a few minutes

to solve.

CSCE-774 Robotic Systems

Lunar Landing

The following is an open loop trajectory that was planned in a 12-dimensional state space. The

video shows an X-Wing fighter that must fly through structures on a lunar base before entering

the hangar. This result was presented by Steve LaValle and James Kuffner at the Workshop on

the Algorithmic Foundations of Robotics, 2000.

CSCE-774 Robotic Systems

