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Fundamental Problems In Robotics 

• How to Go From A to B ? (Path Planning)
• What does the world looks like? (mapping)

– sense from various positions
– integrate measurements to produce map
– assumes perfect knowledge of position

• Where am I in the world? (localization)
– Sense
– relate sensor readings to a world model
– compute location relative to model
– assumes a perfect world model

• Together, the above two are called SLAM
(Simultaneous Localization and Mapping)
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Localization

• Tracking: Known initial position

• Global Localization: Unknown initial position

• Re-Localization: Incorrect known position

– (kidnapped robot problem)
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Uncertainty 

Central to any real system!
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Localization

Initial state
detects nothing:

Moves and 
detects landmark:

Moves and 
detects nothing:

Moves and 
detects landmark:
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Sensors
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• Proprioceptive Sensors
(monitor state of vehicle-

propagate)
– IMU (accels & gyros)
– Wheel encoders
– Doppler radar …

• Noise

• Exteroceptive Sensors
(monitor environment-update)
– Cameras (single, stereo, 

omni, FLIR …)
– Laser scanner
– MW radar
– Sonar 
– Tactile…

• Uncertainty



Bayesian Filter

• "Filtering" is a name for combining data.

• Nearly all algorithms that exist for spatial reasoning 
make use of this approach
– If you’re working in robotics, you’ll see it over and over!

• Efficient state estimators
– Recursively compute the robot’s current state based on the 

previous state of the robot
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State Estimation
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• What is the robot’s state?
• Depends on the robot

– Indoor mobile robot
• x=[x, y, θ]

– 6DOF mobile vehicle
• x=[x, y, z, φ, ψ, θ]

– Manipulators
• x=[θ1, θ2, … , θn] or
• x=[x, y, z, φ, ψ, θ] pose of end-

effector



Bayesian Filter

• Estimate state x from data Z
– What is the probability of the robot being at x?

• x could be robot location, map information, locations of 
targets, etc…

• Z could be sensor readings such as range, actions, 
odometry from encoders, etc…)

• This is a general formalism that does not depend on 
the particular probability representation

• Bayes filter recursively computes the posterior 
distribution:
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Derivation of the Bayesian Filter
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Estimation of the robot’s state given the data:

The robot’s data, Z, is expanded into two types: 

observations oi and actions ai

Invoking the Bayesian theorem



Derivation of the Bayesian Filter
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Denominator is constant relative to xt

First-order Markov assumption shortens first term:

Expanding the last term (theorem of total probability):



Reminder: Bayes Rule

- Bayes rule relates conditional probabilities

p( o | S )  =    
p( S | o ) p( o ) 

- So, what does this say about 

p( S )
Bayes rule

odds( o | S2  S1 )  ?    

p( o  S )  =  p( o | S ) p( S )

- Conditional probabilities

Can we update easily ?
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Graphical Models, Bayes’ Rule and the Markov Assumption

States x1 x2

T(xj|ai, xi)

Z2

b1Beliefs

Z1
Observations

a1Actions

O(zj|xi)

b2

Z2

Hidden

Observable
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Derivation of the Bayesian Filter
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First-order Markov assumption shortens middle term:

Finally, substituting the definition of Bel(xt-1):

The above is the probability distribution that must be 
estimated from the robot’s data



Iterating the Bayesian Filter

• Propagate the motion model:

• Update the sensor model:
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Compute the current state estimate before taking a sensor reading by 
integrating over all possible previous state estimates and applying the 
motion model

Compute the current state estimate by taking a sensor reading and 
multiplying by the current estimate based on the most recent motion 
history



Bayes Filter
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Posterior belief

after an action

An action

is taken

Posterior belief

after sensing

State Space

Initial belief



Representation of the Belief Function
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Parametric 
representations

Sample-based 
representations

e.g. Particle filters



Different Approaches
Discrete approaches (’95)
• Topological representation (’95)
• Uncertainty handling (POMDPs)
• occas. global localization, recovery
• Grid-based, metric representation (’96)
• global localization, recovery

Particle filters (’98)
• Condensation (Isard and Blake ’98)
• Sample-based representation
• Global localization, recovery
• Rao-Blackwellized Particle Filter

Kalman filters (Early-60s?)
• Gaussians
• approximately linear models
• position tracking
Extended Kalman Filter
Information Filter
Unscented Kalman Filter

Multi-hypothesis (’00)
• Mixture of Gaussians
• Multiple Kalman filters
• Global localization, recovery
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Bayesian Filter : Requirements for 
Implementation

• Representation for the belief function

• Update equations 

• Motion model

• Sensor model

• Initial belief state
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