CSCE 590 INTRODUCTION TO IMAGE PROCESSING

Image Acquisition

Image Acquisition and Representation

Output (digitized) image

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Image Representation

- Discrete representation of images
- we'll carve up image into a rectangular grid of pixels $P[x, y]$
- •each pixel p will store an intensity value in [01]
$-\bullet 0 \rightarrow$ black; $1 \rightarrow$ white; in-between \rightarrow gray
- •Image size m by $\mathrm{n} \rightarrow(m n)$ pixels

Color Image

0 Colors along Red axis 1

Elements of Human Visual Perception

Human visual perception plays a

 key role in selecting a techniqueLens and Cornea: focusing on the objects

Two receptors in the retina:

- Cones and rods
- Cones located in fovea and are highly sensitive to color
- Rods give a general overall picture of view, are insensitive to color and are sensitive to low level of illumination

http://www.mydr.com.au/eye-health/eye-anatomy

Distribution of Rods and Cones in the Retina

FIGURE 2.2
Distribution of rods and cones in the retina.

Brightness Adaptation: Subjective Brightness

Scotopic:

- Vision under low illumination
- rod cells are dominant

Photopic:

- Vision under good illumination
- cone cells are dominant

The total range of distinct intensity levels the eye can discriminate simultaneously is rather small

Brightness adaptation level

Brightness Discrimination

Weber Ratio/Fraction
$I+\Delta I_{c}:$
Short-duration flash
Small ratio: good brightness discrimination

Large ratio: poor brightness discrimination

An opaque glass
FIGURE 2.5 Basic
experimental
setup used to
characterize
brightness
discrimination.

Brightness Discrimination at Different Intensity Levels

FIGURE 2.6
Typical Weber
ratio as a function
of intensity.

Perceived Intensity is Not a Simple Function of the Actual Intensity (1)

a
b
c
FIGURE 2.7
Illustration of the
Mach band effect Perceived intensity is not a simple function of actual intensity.

Perceived Intensity is Not a Simple Function of the Actual Intensity (2) - Simultaneous Contrast

a b c
FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

Optical Illusions: Complexity of Human Vision

More Optical Illusions

http://www.123opticalillusions.com/

http://brainden.com/optical-illusions.htm

More Optical Illusions

Image Formation in the Eye

Image is upside down in the retina/imaging plane!

FIGURE 2.3
Graphical
representation of the eye looking at a palm tree. Point C is the optical center of the lens.

Adjust focus length

- Camera
- Human eye

Lens Parameters

Thin lens theory: $\frac{1}{S 1}+\frac{1}{S 2}=\frac{1}{f}$ •Increasing the distance from the object to the lens

Depth of Field \& Out of Focus

- DOF is inversely proportional to the focus length
- DOF is proportional to $\mathbf{S 1}$
http://www.azuswebworks.com/photography/dof.html

> Image plane

Light and EM Spectrum

THE ELECTRO MAGNETIC SPECTRUM
Wavelength (metres)

http://www.kollewin.com/blog/electromagnetic-spectrum/

Relation Among Wavelength, Frequency and Energy

FIGURE 2.11

Graphical
representation of one wavelength.

wavelength (λ), frequency (v), and energy (E)
$\lambda=\frac{c}{v}, \quad c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$ is the speed of light
$E=h v, h$ is the Planck's constant, $6.626068 \times 10^{-34} \mathrm{~m}^{2} \mathrm{~kg} / \mathrm{s}$

Light and EM Spectrum

What size of the object you can "see"? Diffraction-limit.

Airy disk: the size is proportional to wavelength and f-number (focal length/lens dimension)

$$
\sim \lambda \frac{f}{d}
$$

http://en.wikipedia.org/wiki/Airy_disc

Image Sensing and Acquisition

Illumination energy \rightarrow digital images
 Incoming energy is transformed into a voltage

Slides courtesy of Prof. Yan Tong

A (2D) Image

An image $=$ a 2 D function $f(x, y)$ where

- x and y are spatial coordinates
- $f(x, y)$ is the intensity or gray level

A digital image:

- x, y, and $f(x, y)$ are all finite

- For example $x \in\{1,2, \ldots, M\}, y \in\{1,2, \ldots, N\}$

$$
f(x, y) \in\{0,1,2, \ldots, 255\}
$$

Digital image processing \rightarrow processing digital images by means of a digital computer

Each element (x, y) in a digital image is called a pixel (picture element)

A Simple Image Formation Model

$$
\begin{aligned}
& f(x, y)=i(x, y) \cdot r(x, y) \\
& 0<f(x, y)<\infty: \text { Image (positive and finite) }
\end{aligned}
$$

Source: $0<i(x, y)<\infty$: Illumination component
Object: $0<r(x, y)<1$: Reflectance/transmission component

$$
\begin{aligned}
& L_{\min }<f(x, y)<L_{\max } \quad \text { in practice } \\
& \text { where } L_{\min }=i_{\min } r_{\min } \text { and } L_{\max }=i_{\max } r_{\max }
\end{aligned}
$$

$\mathrm{i}(\mathrm{x}, \mathrm{y}):$	Sunlight: $10,000 \mathrm{~lm} / \mathrm{m}^{2}$ (cloudy), $90,000 \mathrm{~lm} / \mathrm{m}$
$\mathrm{O}(\mathbf{x}, \mathrm{y}):$	Black velvet $0.01 ;$ white pall $0.8 ; 0.93$ snow

Image Sampling and Quantization

Sampling: Digitizing the coordinate values (usually determined by sensors)

Quantization: Digitizing the amplitude values

Image Sampling and Quantization in a Sensor Array

a b
FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image sampling and quantization.

CCD array

Dynamic Range

$$
L_{\min }<f(x, y)<L_{\max } \quad \text { in practice }
$$

where $L_{\text {min }}=i_{\text {min }} r_{\text {min }}$ and $L_{\text {max }}=i_{\text {max }} r_{\text {max }}$

Dynamic range/contrast ratio:

the ratio of the maximum detectable intensity level (saturation) to the minimum detectable intensity level (noise)

$$
\frac{I_{\max }}{I_{\min }}
$$

High Dynamic Range

https://en.wikipedia.org/wiki/High-dynamic-range_imaging

High Dynamic Range

High Dynamic Range

CSCE 5

High Dynamic Range

High Dynamic Range

Representing Digital Images

(a): $f(x, y), x=0,1, \ldots, M-1, y=0,1, \ldots, N-1$
x, y : spatial coordinates \rightarrow spatial domain
(b): suitable for visualization
(c): processing and algorithm development
x : extend downward (rows)
y : extend to the right (columns)

Spatial Resolution

Spatial resolution: smallest discernible details

- \# of line pairs per unit distance
- \# of dots (pixels) per unit distance
- Printing and publishing
- In US, dots per inch (dpi)

Newspaper \longrightarrow magazines \longrightarrow book

Large image size itself does not mean high spatial resolution!
\Longrightarrow Scene/object size in the image

[^0]
Intensity Resolution

Intensity resolution

- Smallest discernible change in intensity levels
- Using the number of levels of intensities
- False contouring (banding) when k is small - undersampling

Isopreference Curves

a b c
FIGURE 2.22 (a) Image with a low level of detail. (b) Image with a medium level of detail. (c) Image with a relatively large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

Vary the spatial and intensity sampling simultaneously:

FIGURE 2.23
Typical
isopreference curves for the three types of images in Fig. 2.22.

Data heavy

1920

$\stackrel{\ominus}{\ominus}\left[\begin{array}{cccccccccc}43 & 43 & 42 & 40 & 39 & \cdots & 29 & 29 & 31 & 33 \\ 42 & 41 & 40 & 39 & 38 & \cdots & 31 & 32 & 35 & 37 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots \\ 54 & 57 & 60 & 62 & 66 & \cdots & 42 & 43 & 56 & 46\end{array}\right]$
$\stackrel{\ominus}{\odot}\left[\begin{array}{cccccccccc}129 & 129 & 129 & 129 & 128 & \cdots & 149 & 149 & 151 & 153 \\ 128 & 128 & 127 & 128 & 127 & \cdots & 151 & 152 & 155 & 157 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots \\ 146 & 146 & 148 & 148 & 148 & \cdots & 149 & 150 & 151 & 152\end{array}\right] G$
$\stackrel{\odot}{\odot}\left[\begin{array}{cccccccccc}146 & 146 & 146 & 145 & 146 & \cdots & 166 & 166 & 168 & 170 \\ 145 & 145 & 144 & 144 & 145 & \cdots & 168 & 169 & 172 & 174 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots \\ 159 & 160 & 160 & 161 & 162 & \cdots & 165 & 166 & 165 & 166\end{array}\right] \mathrm{B}$

Aliasing

- Images are not actually continuous.
- The sampling (and hardware) issues lead to a few other minor problems.

Aliasing

CCD-Chip

Aliasing

- To avoid: $f_{\text {sampling }}>2 F_{\max }$
- Nyquist Rate

Aliasing: Moiré Patterns

III-posed

- What a camera does to the 3d world...

Shigeo Fukuda

squeezes away one dimension

III-posed

- What a camera does to the 3d world...

Shigeo Fukuda

III-posed

- In trying to extract 3d structure from 2d images, vision is an ill-posed problem.

- In trying to extract 3d structure from 2d images, vision is an ill-posed problem.

III-posed

- In trying to extract 3d structure from 2d images, vision is an ill-posed problem.

- An image isn't enough to disambiguate the many possible 3d worlds that could have produced it.

Camera Geometry

3D $\rightarrow 2 \mathrm{D}$ transformation: perspective projection

Coordinate Systems

Add coordinate systems in order to describe feature points...

Coordinate Systems

canonical axes

From 3d to 2d

$$
\begin{aligned}
& \text { goal: to recover information about }(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \text { from } \\
& \qquad(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

Camera Calibration

- Camera Model
- [lllll $\left.\begin{array}{ll}1 & 1\end{array}\right]$ Pixel coords
- $\left[\begin{array}{llll}x_{w} & y_{w} & z_{w} & 1\end{array}\right]^{T}$ World coords

$$
z_{c}\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=A\left[\begin{array}{ll}
R & T
\end{array}\right]\left[\begin{array}{c}
x_{w} \\
y_{w} \\
z_{w} \\
1
\end{array}\right]
$$

- Intrinsic Parameters
$-\alpha_{x}=f \cdot m_{x}, \alpha_{y}=f \cdot m_{y}$ focal lengths in pixels
- γ skew coefficient
- u_{0}, v_{o} focal point

$$
A=\left[\begin{array}{ccc}
\alpha_{x} & \gamma & u_{0} \\
0 & \alpha_{y} & v_{o} \\
0 & 0 & 1
\end{array}\right]
$$

- Extrinsic Parameters
$-\left[\begin{array}{ll}R & T\end{array}\right]$ Rotation and Translation

Camera Calibration

Existing packages in MATLAB, OpenCV, etc

Rectified Image Sample

Unrectified

From Clearpath Husky Axis M1013 camera

Rectified Image Sample

Unrectified

From Parrot ARDrone 2.0 front camera

Rectified Image Sample

Unrectified

Rectified

From GoPro HERO3+ at Barbados 2015 Field Trials

ReRectified Image Sample

Rectified

From Aqua front camera at Barbados 2013 Field Trials

[^0]: 41
 $1280 * 960$

