

CSCE 590 INTRODUCTION TO IMAGE PROCESSING

Motion and Optical Flow

Ioannis Rekleitis

Correspondence

Fiduciary Markers/Fiducial

Fourier Tag

- Invariant to transformations
- Unique
- Efficient to compute
- Good precision and high recall
- Several Alternatives:
 - Harris Corners (OpenCV)
 - SURF (OpenCV)
 - SIFT
 - ORB
 - etc

Harris Corners

Harris Corners

SIFT

SIFT

SURF

SURF

ORB

ORB

Outliers

RANSAC

• See Visual Odometry Tutorial Presentation

Mosaic

3D Sparse reconstruction

3D Sparse reconstruction

Source: https://grail.cs.washington.edu/rome/

Internet Photos ("Colosseum")

Reconstructed 3D cameras and points

Egomotion

$C_1 M_1 (T \times R C_2 M_2) = 0$

Visual Odometry/Structure from Motion

- Definition:
 - the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer (an eye or a camera) and the scene.

Difference between Optical Flow and Scene Motion

- Optical flow: change in the image (2D)
- Scene Motion: change in the scene (3D)

Optical Flow Field

Information about *image motion* rather than the *scene*. *This is a classic* **reconstruction** *problem*.

This next step might be to use the image motion to infer scene motion, robot motion or 3D layout.

time sequence of images

Information about scene motion rather than the scene.

Information about scene motion rather than the scene.

optical flow

How?

• By measuring the direction that intensities are moving... I(x,y,t)

90	90	70	40	40	
90	90	70	40	40	
90	70	50	40	30	
90	90	70	40	25	
90	70	40	40	25	

90 70 40 40 25

90 70 40 40 20

70 50 40 30 15

99 90 90 70 40

95 90 70 40 40

By measuring the direction that intensities are moving...

 $\frac{dI}{dx} = I_x \text{ at } (0,0,0)$

We can estimate things ...

By measuring the direction that intensities are moving...

By measuring the direction that intensities are moving...

 $\frac{dI}{dx} = I_x$

We can estimate things like

CSCE 590: Introduction to Image Processing

$$\frac{dI}{dy} = I_y \quad \frac{dI}{dt} = I_t \qquad 29$$

Let I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint):

$$I(x,y,t) = I(x + dx, y + dy, t + dt)$$

Let I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint)

$$I(x,y,t) = I(x + dx, y + dy, t + dt)$$

Reminder: $f(x + dx) = f(x) + f'(x) dx + f''(x) dx^2/2 + ...$

Let I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint)

$$I(x,y,t) = I(x + dx, y + dy, t + dt)$$

Reminder: $f(x + dx) = f(x) + f'(x) dx + f''(x) dx^2/2 + ...$

 $I(x,y,t) = I(x,y,t) + I_x dx + I_y dy + I_t dt + 2nd deriv. + higher$

Let I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint)

$$I(x,y,t) = I(x + dx, y + dy, t + dt)$$

Reminder: $f(x + dx) = f(x) + f'(x) dx + f''(x) dx^2/2 + ...$

 $I(x,y,t) = I(x,y,t) + I_x dx + I_y dy + I_t dt + 2nd deriv. + higher$

 $0 = I_x dx + I_y dy + I_t dt$

ignore these terms

Let I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint)

$$I(x,y,t) = I(x + dx, y + dy, t + dt)$$

 $f(x + dx) = f(x) + f'(x) dx + f''(x) dx^2/2 + ...$ Reminder:

$$I(x,y,t) = I(x,y,t) + I_x dx + I_y dy + I_t dt + 2nd deriv. + higher$$

$$0 = I_x dx + I_y dy + I_t dt$$

$$-I_t = I_x \frac{dx}{dt} + I_y \frac{dy}{dt}$$

intensity-flow equation

good and bad...

90 70 40 40

The "aperture" problem

$$-I_{t} = I_{x} \frac{dx}{dt} + I_{y} \frac{dy}{dt}$$

- The intensity-flow equation provides only one constraint on *two* variables (x-motion and y-motion)
- → It is only possible to find optical flow in one direction...

The "aperture" problem

It is only possible to find optical flow in one direction... *at any single point in the image !*

Smoothing can be done by incorporating neighboring points' information.

Observations & Warnings

- Assume the scene itself is static.
- Find matching chunks in the images.
- An instance of *correspondence*.

BUT

- World really isn't static.
- Lightning might change even in a static scene.

Features vs Optical Flow

- Feature-based methods
 - Detect features (corners, textured areas), extract descriptors, and track them
 - Sparse motion fields, but possibly robust tracking
 - Suitable especially when image motion is large (10s of pixels)
- Direct methods (optical flow)
 - Directly recover image motion from spatio-temporal image brightness variations
 - Global motion parameters directly recovered without an intermediate feature motion calculation
 - Dense motion fields, but more sensitive to appearance variations
 - Suitable for video and when image motion is small (< 10 pixels)

Camera and IMU

From drifter with Raspberry PI Camera and Pololu MinIMU-9 v3 at Barbados 2016 Field Trials

A Vision "solution"

• If interpreting a single image is difficult... What about more ?!

multiple cameras

multiple times

Object recognition

source: http://www.cs.cornell.edu/courses/cs4670/2013fa/

Pedestrian and car detection

Lane detection

CSCE 590: Introduction to Image Processing

From GoPro 3D Hero at Barbados 2015 Field Trial

Coral classification

Bag of words

source: http://wikimedia.org

Appearance-based place recognition

source: http://www.robots.ox.ac.uk/~mjc

Deep learning based classification

Computer Vision Books

- Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer, 2010
- Richard Hartley and Andrew Zisserman, "Multiple View Geometry in Computer Vision", Cambridge University Press, 2004
- David Forsyth and Jean Ponce, "Computer Vision: A Modern Approach", Pearson, 2011

Nice Classes

- Noah Snavely Introduction to Computer Vision <u>http://www.cs.cornell.edu/courses/</u> <u>cs4670/2013fa/lectures/lectures.html</u>
- Steve Seitz and Rick Szeliski Computer Vision <u>http://courses.cs.washington.edu/courses/</u> <u>cse576/08sp/</u>

Questions?

