CSCE 590 INTRODUCTION TO IMAGE PROCESSING

Single Image Operations

Single pixel operations

- Determined by
- Transformation function T
- Input intensity value
- Not depend on other pixels and position

Neighborhood Operations

Image smoothing $g(x, y)=$
$\frac{1}{m n} \sum_{(r, c) \in S_{x y}} f(r, c)$

Other examples:

- Interpolation
-Image filtering

$\begin{array}{ll}a & b \\ c & \end{array}$
c
FIGURE 2.35 Local averaging using neighborhood processing. The procedure is illustrated in (a) and (b) for a rectangular neighborhood. (c) The aortic angiogram discussed in Section 1.3.2 (d) The result of using Eq. (2.6-21) with $m=n=41$. The images are of size 790×686 pixels.

Image Resampling \& Interpolation

Need to resample the image when

- Rescaling
- Geometrical transformation
- The output image coordinates are not discrete

Interpolation methods:

- Nearest neighbor

- Fast and simple
- Loss of sharpness
- Artifacts (checkerboard)
- Bilinear
- Bicubic
- Images are sharpest
- Fine details are preserved
-90: Slow
Slides courtesy of Prof. Yan Tong

Image Resampling \& Interpolation

a b c
d e f
FIGURE 2.24 (a) Image reduced to 72 dpi and zoomed back to its original size (3692×2812 pixels) using nearest neighbor interpolation. This figure is the same as Fig. 2.20(d). (b) Image shrunk and zoomed using

Image Resampling \& Interpolation

- Forward mapping

Input
Output

Issues on Image Resampling \& Interpolation

- Missing points in forward mapping

- Solution: perform a backward mapping

Input
Output

Image Interpolation - Nearest Neighbor

http://www.brockmann-consult.de/beam/doc/help/general/ResamplingMethods.html

Assign each pixel in the output image with the nearest neighbor in the input image.

Image Interpolation - Bilinear

http://www.brockmann-consult.de/beam/doc/help/general/ResamplingMethods.html

$$
\begin{aligned}
P^{\prime}= & P(1,1)(1-d)\left(1-d^{\prime}\right) \\
& +P(1,2) d\left(1-d^{\prime}\right)+P(2,1) * d^{\prime} \\
& +(1-d)+P(2,2) d d^{\prime}
\end{aligned}
$$

Image Interpolation - Bicubic

If we know the intensity values, derivatives, and cross derivatives for the four corners $(0,0),(0,1),(1,0)$, and $(1,1)$, we can interpolate any point (x, y) in the region

$$
x \in[\mathbf{0}, \mathbf{1}], y \in[\mathbf{0}, \mathbf{1}]
$$

$$
\widetilde{P}(x, y)=\sum_{i=0}^{3} \sum_{j=0}^{3} a_{i j} x^{i} y^{j} \quad \text { Need to solve the } 16 \text { coefficients }
$$

Some Basic Relationships between Pixels

Neighbors of a pixel

Adjacency

- Adjacency is the relationship between two pixels p and q
- V is a set of intensity values used to define adjacency $\quad V \sqsubseteq\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{2 5 5}\}$
- $f(\boldsymbol{p}) \in V \quad$ and $f(\boldsymbol{q}) \in V \Rightarrow$ Intensity constraints
- Binary image: $V=\{1\}$ or $V=\{0\}$
- Gray level image:

Adjecency

Three types of adjacency:

Connectivity

- Path from p to q : a sequence of distinct and adjacent pixels with coordinates

$$
\text { Starting point } \mathrm{p} \stackrel{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)}{\leftarrow} \underbrace{\stackrel{\left(x_{n}, y_{n}\right)}{\longrightarrow}}_{\text {adjacent }} \text { ending point } \mathrm{q}
$$

- Closed path: if the starting point is the same as the ending point
- p and q are connected: if there is a path from p to q in S
- Connected component: all the pixels in S connected to p
- Connected set: S has only one connected component

Are they connected sets?

Regions

- R is a region if R is a connected set
- R_{i} and R_{j} are adjacent if $R_{i} \cup R_{j} \quad$ is a connected set
$\left.\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & \cdots & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right\} R_{i}$

Boundaries

- Inner boundary (boundary) -- the set of pixels each of which has at least one background neighbor
- Outer boundary - the boundary pixels in the background

Distance Measures

-For pixels p, q, and z , with coordinates (x, y), (s, t) and (v, w), D is a distance function or metric if
(a) $D(p, q) \geq 0 \quad D(p, q)=0$ iff $p=q$
(b) $D(p, q)=D(q, p)$, and
(c) $D(p, z) \leq D(p, q)+D(q, z)$

Distance Measures

-Euclidean distance $D_{e}(p, q)=\sqrt{(x-s)^{2}+(y-t)^{2}}$
-City-block (D4) distance $D_{4}(p, q)=|x-s|+|y-t|$
-Chessboard (D8) distance (Chebyshev distance)

$$
D_{8}(p, q)=\max (|x-s|,|y-t|)
$$

Distance: Sample Problem

-D4 distance

6
-D8 distance 5

- Euclidean distance $\sqrt{ } \mathbf{1}+\mathbf{5} \boldsymbol{1 2}$

Distance vs length of a path?

Geometric Spatial Transformations - Rubber Sheet Transformation

$$
(x, y)=T\{(v, w)\}
$$

Affine transform:

$$
\begin{aligned}
& {\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\mathbf{T}\left[\begin{array}{c}
v \\
w \\
1
\end{array}\right]=\left[\begin{array}{lll}
t_{11} & t_{12} & 0 \\
t_{21} & t_{22} & 0 \\
t_{31} & t_{32} & 1
\end{array}\right]\left[\begin{array}{c}
v \\
w \\
1
\end{array}\right]} \\
& \text { Inverse mapping }
\end{aligned}
$$

$$
\left[\begin{array}{c}
v \\
w \\
1
\end{array}\right]=\mathbf{T}^{-1}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

TABLE 2.2
Affine transformations based on Eq. (2.6.-23).

Transformation Name	Affine Matrix, T	Coordinate Equations	Example
Identity	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$x=v$ $y=w$	
Scaling	$\left[\begin{array}{lll}c_{x} & 0 & 0 \\ 0 & c_{y} & 0 \\ 0 & 0 & 1\end{array}\right]$	$x=c_{x} v$ $y=c_{y} w$	
Rotation	$\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$	$\begin{aligned} & x=v \cos \theta-w \sin \theta \\ & y=v \cos \theta+w \sin \theta \end{aligned}$	
Translation	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ t_{x} & t_{y} & 1\end{array}\right]$	$\begin{aligned} & x=v+t_{x} \\ & y=\boldsymbol{w}+t_{y} \end{aligned}$	
Shear (vertical)	$\left[\begin{array}{lll}1 & 0 & 0 \\ s_{v} & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$\begin{gathered} x=v+s_{v} w \\ y=w \end{gathered}$	
Shear (horizontal)	$\left[\begin{array}{ccc}1 & s_{h} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$\begin{gathered} x=v \\ y=s_{h} v+w \end{gathered}$	

Geometric Spatial Transformations

Nearest neighbor

Bilinear

Bicubic

Note: a neighborhood operation, i.e., interpolation, is required following geometric transformation

Image Registration

Compensate the geometric change in:

- view angle
- distance
- orientation
- sensor resolution
- object motion

Four major steps:

- Feature detection
- Feature matching
- [ransformation model
- Resampling

a b
c d
FIGURE 2.37
Image
registration (a) Reference image. (b) Input (geometrically distorted image). Corresponding tie points are shown as small white squares near the corners.
(c) Registered image (note the errors in the borders).
(d) Difference between (a) and (c), showing more registration errors.

Image Registration

Coordinates in the moving image (v, w) Coordinates in the template image ($\boldsymbol{x}, \boldsymbol{y}$)

- Known: coordinates of the points (x, y) and (v, w)
- Unknown: $c \downarrow 1$ to $c \downarrow 8$

4 tie points -> 8 equations

Slides courtesy of Prof. Yan Tong

Dilation and Erosion

Erosion

Dilation

Usually on binary images, after thresholding and/or segmentation

Dilation and Erosion

Erosion

Dilation

Dilation and Erosion

Erosion

Dilation

Dilation and Erosion

Erosion

Dilation

Dilation and Erosion

Erosion

Dilation

Questions?

