

CSCE 590 INTRODUCTION TO IMAGE PROCESSING

Image Generation Perspective Transformation

Ioannis Rekleitis

Human Perception VS Machine Vision

Limited vs entire EM spectrum

http://www.kollewin.com/blog/electromagnetic-spectrum/

CSCE 590: Introduction to Image Processing

Slides courtesy of Prof. Yan Tong

Image Acquisition and Representation

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Image Representation

Discrete representation of images

- we'll carve up image into a rectangular grid of pixels P[x,y]
- each pixel p will store an intensity value in [0 1]
- $\cdot 0$ →black; 1 →white; in-between →gray
- •Image size *m* by n →(*mn*) pixels

Elements of Human Visual Perception

Human visual perception plays a key role in selecting a technique

Lens and Cornea: focusing on the objects

Two receptors in the retina:

- Cones and rods
- Cones located in fovea and are highly sensitive to color
- Rods give a general overall picture of view, are insensitive to color and are sensitive to low level of illumination

http://www.mydr.com.au/eye-health/eye-anatomy

CSCE 590: Introduction to Image Processing

Distribution of Rods and Cones in the Retina

Brightness Adaptation: Subjective Brightness

Scotopic:

- Vision under low illumination
- rod cells are dominant

Photopic:

- Vision under good illumination
- cone cells are dominant

The total range of distinct intensity levels the eye can discriminate *simultaneously* is rather small

Brightness adaptation level

FIGURE 2.4

Range of subjective brightness sensations showing a particular adaptation level.

Brightness Discrimination

CSCE 590: Introduction to Image Processing

Slides courtesy of Prof. Yan Tong

Brightness Discrimination at Different Intensity Levels

CSCE 590: Introduction to Image Processing

Perceived Intensity is Not a Simple Function of the Actual Intensity (1)

Perceived Intensity is Not a Simple Function of the Actual Intensity – Simultaneous Contrast

a b c

FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

Optical Illusions: Complexity of Human Vision

More Optical Illusions

http://brainden.com/optical-illusions.htm

CSCE 590: Introduction to Image Processing

Slides courtesy of Prof. Yan Tong

Image Formation in the Eye

Image is upside down in the retina/imaging plane!

FIGURE 2.3

Graphical representation of the eye looking at a palm tree. Point C is the optical center of the lens.

14

Adjust focus length

- Camera
- Human eye

Lens Parameters

Depth of Field & Out of Focus

http://www.azuswebworks.com/photography/dof.html

• DOF is inversely proportional to the focus length

16

DOF is proportional to S1

Light and EM Spectrum

http://www.kollewin.com/blog/electromagnetic-spectrum/

Relation Among Wavelength, Frequency and Energy

wavelength (λ), frequency (v), and energy (E)

$$\lambda = \frac{c}{v}$$
, $c = 2.998 \times 10^8$ m/s is the speed of light

E = hv, h is the Planck's constant, 6.626068 × 10⁻³⁴ m² kg / s

CSCE 590: Introduction to Image Processing

Light and EM Spectrum

What size of the object you can "see"? Diffraction-limit.

http://en.wikipedia.org/wiki/Airy_disc

Airy disk: the size is proportional to wavelength and f-number (focal length/lens dimension)

 $\sim \lambda f/d$

Image Sensing and Acquisition

Illumination energy → digital images

Incoming energy is transformed into a voltage

b c FIGURE 2.12 (a) Single imaging sensor. (b) Line sensor. (c) Array sensor.

20

а

Digitizing the response

CSCE 590: Introduction to Image Processing

A (2D) Image

- •An image = a 2D function *f*(*x*,*y*) where
 - x and y are spatial coordinates
 - -f(x,y) is the intensity or gray level
- •An digital image:
 - -x, y, and f(x,y) are all finite
 - For example $x \in \{1, 2, ..., M\}$, $y \in \{1, 2, ..., N\}$

$$f(x, y) \in \{0, 1, 2, \dots, 255\}$$

- •Digital image processing → processing digital images by means of a digital computer
- •Each element (*x*,*y*) in a digital image is called a pixel (picture element)

Slides courtesy of Prof. Yan Tong

0

> x

A Simple Image Formation Model

$$f(x, y) = i(x, y) \cdot r(x, y)$$

$$0 < f(x, y) < \infty: \text{ Image (positive and finite)}$$

Source: $0 < i(x, y) < \infty:$ Illumination component
Object: $0 < r(x, y) < 1:$ Reflectance/transmission component

 $L_{\min} < f(x,y) < L_{\max}$ in practice where $L_{\min} = i_{\min}r_{\min}$ and $L_{\max} = i_{\max}r_{\max}$

i(x,y):

Sunlight: 10,000 lm/m² (cloudy), 90,000lm/m² clear day Office: 1000 lm/m²

(x,y): Black velvet 0.01; white pall 0.8; 0.93 snow Slides courtesy of Prof. Yan Tong²²

Image Sampling and Quantization

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Sampling: Digitizing the coordinate values (usually determined by sensors)

Quantization: Digitizing the amplitude values

CSCE 590: Introduction to Image Processing

Slides courtesy of Prof. Yan Tong

Image Sampling and Quantization in a Sensor Array

CCD array

a b

FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image sampling and quantization.

CSCE 590: Introduction to Image Processing

Slides courtesy of Prof. Yan Tong

Dynamic Range

Dynamic range/contrast ratio:

the ratio of the maximum detectable intensity level (saturation) to the minimum detectable intensity level (noise)

Slides courtesy of Prof. Yan Tong

Representing Digital Images

(a): f(x,y), x=0, 1, ..., M-1, y=0,1, ..., N-1

x, y: spatial coordinates \rightarrow spatial domain

- (b): suitable for visualization
- (c): processing and algorithm development
- x: extend downward (rows)
- y: extend to the right (columns)

Number of bits storing the image

$$\hat{b} = M \times N \times k$$

0: Introduction to Image Processing

bc FIGURE 2.18 (a) Image plotted as a surface. (b) Image displayed as a visual intensity array. (c) Image shown as a 2-D numerical array (0, .5, and 1 represent black, gray, and white,

f(x, y)

Store an Image

SCE 590: Introduction to Image Processing

TABLE 2.1

Number of storage bits for various values of *N* and *k*.

N k	1(L = 2)	2(L = 4)	3(L = 8)	4(L = 16)	5(L = 32)	6(L = 64)	7(L = 128)	8 (L = 256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

Slides courtesy of Prof. Yan Tong

Spatial Resolution

Spatial resolution: smallest discernible details

- # of line pairs per unit distance
- # of dots (pixels) per unit distance
 - Printing and publishing
 - In US, dots per inch (dpi)

Large image size itself does not mean high spatial resolution!

Scene/object size in the image

a b c d

Slides courtesy of Prof. Yan Tong

Intensity Resolution

Intensity resolution

- Smallest discernible change in intensity levels
- Using the number of levels of intensities
- False contouring (banding) when k is small undersampling

64

SCE 590: Introduction to Image Processing 16 8

Isopreference Curves

a b c

FIGURE 2.22 (a) Image with a low level of detail. (b) Image with a medium level of detail. (c) Image with a relatively large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

Vary the spatial and intensity sampling simultaneously:

Slides courtesy of Prof. Yan Tong

FIGURE 2.23

Typical isopreference curves for the three types of images in Fig. 2.22.

Data heavy

1080		$\begin{bmatrix} 43\\42\\\vdots\\54 \end{bmatrix}$	$43 \\ 41 \\ \vdots \\ 57$	42 40 : 60	$\begin{array}{cccc} 40 & 39 \\ 39 & 38 \\ \vdots & \vdots \\ 62 & 66 \end{array}$) 3 	29 31 : 42	$\begin{array}{cccc} 29 & 3 \\ 32 & 3 \\ \vdots & \vdots \\ 43 & 5 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		R
1080	$\begin{bmatrix} 129\\128\\\vdots\\146 \end{bmatrix}$	12° 12° \vdots 14°	$egin{array}{ccc} 9 & 12 \ 8 & 12 \ & & dots \ 6 & 14 \end{array}$	29 12 27 12 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 ··· 7 ··· 8 ···	$149 \\ 151 \\ \vdots \\ 149$	149 152 : 150	151 155 : 151	153 157 : 152]	G
1080	$\begin{bmatrix} 146\\ 145\\ \vdots\\ 159 \end{bmatrix}$	$14 \\ 14 \\ \vdots \\ 16 \\ 16 \\ 16 \\ 16 \\ 10 \\ 10 \\ 10 \\ 10$	$egin{array}{ccc} 6 & 14 \ 5 & 14 \ & dots \ & \ & \ & \ & \ & \ & \ & \ & \ & \ $	$ \begin{bmatrix} 6 & 1^2 \\ 4 & 1^2 \end{bmatrix} $	$egin{array}{cccc} 45 & 14 \ 44 & 14 \ dots & dots \ \ dots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{cccc} 6 & \cdots \\ 5 & \cdots \\ & \cdots \\ 2 & \cdots \end{array}$	$166 \\ 168 \\ \vdots \\ 165$	$166 \\ 169 \\ \vdots \\ 166$	$168 \\ 172 \\ \vdots \\ 165$	$170 \\ 174 \\ \vdots \\ 166$	В

From GoPro HERO3+ at Barbados 2015 Field Trials

Aliasing

- Images are not actually continuous.
- The sampling (and hardware) issues lead to a few other minor problems.

Aliasing

Aliasing

• To avoid: $f_{sampling} > 2F_{max}$ - Nyquist Rate

Aliasing: Moiré Patterns

• What a camera does to the 3d world...

Shigeo Fukuda

squeezes away one dimension

http://www.psychologie.tu-dresden.de/i1/kaw/diverses Material/www.illusionworks.com/html/art_of_shigeo_fukuda.html

• What a camera does to the 3d world...

Shigeo Fukuda

http://www.psychologie.tu-dresden.de/i1/kaw/diverses Material/www.illusionworks.com/html/art_of_shigeo_fukuda.html

• In trying to extract 3d structure from 2d images, vision is an *ill-posed* problem.

• In trying to extract 3d structure from 2d images, vision is an *ill-posed* problem.

• In trying to extract 3d structure from 2d images, vision is an *ill-posed* problem.

 An image isn't enough to disambiguate the many possible 3d worlds that could have produced it.

Camera Geometry

$3D \rightarrow 2D$ transformation: perspective projection

CSCE 590: Introduction to Image Processing

Coordinate Systems

Coordinate Systems

From 3d to 2d

