CSCE 590 INTRODUCTION TO IMAGE PROCESSING

Image Generation
Perspective Transformation

Human Perception VS Machine Vision

- Limited vs entire EM spectrum

THE ELECTRO MAGNETIC SPECTRUM
Wavelength
(metres)

Frequency

http://www.kollewin.com/blog/electromagnetic-spectrum/

Image Acquisition and Representation

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Image Representation

- Discrete representation of images
- we'll carve up image into a rectangular grid of pixels $P[x, y]$
- •each pixel p will store an intensity value in [0 1]
$-\bullet 0 \rightarrow$ black; $1 \rightarrow$ white; in-between \rightarrow gray
- •Image size m by $\mathrm{n} \rightarrow$ (mn) pixels

Elements of Human Visual Perception

Human visual perception plays a key role in selecting a technique

Lens and Cornea: focusing on the objects

Two receptors in the retina:

- Cones and rods
- Cones located in fovea and are highly sensitive to color
- Rods give a general overall picture of view, are insensitive to color and
 are sensitive to low level of illumination

Slides courtesy of Prof. Yan Tong

Distribution of Rods and Cones in the Retina

Slides courtesy of Prof. Yan Tong

Brightness Adaptation: Subjective Brightness

Scotopic:

- Vision under low illumination
- rod cells are dominant

Photopic:

- Vision under good illumination
- cone cells are dominant

The total range of distinct intensity levels the eye can discriminate simultaneously is rather small

Brightness adaptation level

Slides courtesy of Prof. Yan Tong

Brightness Discrimination

Weber Ratio/Fraction

$I+\Delta I_{c}:$
Short-duration flash
Small ratio: good brightness discrimination

Large ratio: poor brightness discrimination

An opaque glass
FIGURE 2.5 Basic
experimental
setup used to
characterize
brightness
discrimination.

Slides courtesy of Prof. Yan Tong

Brightness Discrimination at Different Intensity Levels

Slides courtesy of Prof. Yan Tong

Perceived Intensity is Not a Simple Function of the Actual Intensity (1)

Perceived Intensity is Not a Simple Function of the Actual Intensity - Simultaneous Contrast

a b c
FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

Optical Illusions: Complexity of Human Vision

More Optical Illusions

http://www.123opticalillusions.com/

http://brainden.com/optical-illusions.htm

Image Formation in the Eye

Image is upside down in the retina/imaging plane!

FIGURE 2.3
Graphical
representation of the eye looking at a palm tree. Point
C is the optical center of the lens.

Adjust focus length

- Camera
- Human eye

Lens Parameters

Thin lens theory: $\quad \frac{1}{S 1}+\frac{1}{S 2}=\frac{1}{f} \cdot$ Increasing the distance from the object to the lens will reduce the size of image
$\underset{\text { FOV }}{\text { Field }}$ of View: $\omega=2 \boldsymbol{\operatorname { a r c t a n }} \frac{\boldsymbol{d}}{\boldsymbol{f}}$

Depth of Field \& Out of Focus

- DOF is inversely proportional to the focus length
- DOF is proportional to S1
http://www.azuswebworks.com/photography/dof.html

Light and EM Spectrum

THE ELECTRO MAGNETIC SPECTRUM
Wavelength
(metres)

http://www.kollewin.com/blog/electromagnetic-spectrum/

Relation Among Wavelength, Frequency and Energy

FIGURE 2.11

Graphical
representation of one wavelength.

wavelength (λ), frequency (v), and energy (E)
$\lambda=\frac{c}{v}, \quad c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$ is the speed of light
$E=h v, h$ is the Planck's constant, $6.626068 \times 10^{-34} \mathrm{~m}^{2} \mathrm{~kg} / \mathrm{s}$

Slides courtesy of Prof. Yan Tong

Light and EM Spectrum

What size of the object you can "see"? Diffraction-limit.

Airy disk: the size is proportional to wavelength and f-number (focal length/lens dimension)

$$
\sim \lambda f / d
$$

http://en.wikipedia.org/wiki/Airy_disc

Slides courtesy of Prof. Yan Tong

Image Sensing and Acquisition

Illumination energy
 \rightarrow digital images
 Incoming energy is transformed into a voltage

a
b
c
FIGURE 2.12
(a) Single imaging
sensor.
(b) Line sensor.
(c) Array sensor.

Digitizing the response

Slides courtesy of Prof. Yan Tong

A (2D) Image

- An image $=$ a 2D function $f(x, y)$ where
$-x$ and y are spatial coordinates
$-f(x, y)$ is the intensity or gray level
-An digital image:
$-x, y$, and $f(x, y)$ are all finite

- For example $x \in\{1,2, \ldots, M\}, y \in\{1,2, \ldots, N\}$

$$
f(x, y) \in\{0,1,2, \ldots, 255\}
$$

\bullet Digital image processing \rightarrow processing digital images by means of a digital computer
-Each element (x, y) in a digital image is called a pixel (picture element)

A Simple Image Formation Model

$$
\begin{aligned}
& f(x, y)=i(x, y) \cdot r(x, y) \\
& 0<f(x, y)<\infty: \text { Image (positive and finite) }
\end{aligned}
$$

Source: $0<i(x, y)<\infty$: Illumination component
Object: $0<r(x, y)<1$: Reflectance/transmission component

$$
\begin{aligned}
& L_{\min }<f(x, y)<L_{\max } \quad \text { in practice } \\
& \text { where } L_{\min }=i_{\min } r_{\min } \text { and } L_{\max }=i_{\max } r_{\max }
\end{aligned}
$$

Sunlight: $10,000 \mathrm{~lm} / \mathrm{m}^{2}$ (cloudy), $90,0001 \mathrm{~m} / \mathrm{m}^{2}$ clear day Office: $1000 \mathrm{~lm} / \mathrm{m}^{2}$
 Slides courtesy of Prof. Yan Tong

Image Sampling and Quantization

Sampling: Digitizing the coordinate values (usually determined by sensors)

Quantization: Digitizing the amplitude values
Slides courtesy of Prof. Yan Tong

Image Sampling and Quantization in a Sensor Array

CCD array
a b
FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image sampling and quantization.

Dynamic Range

$$
L_{\min }<f(x, y)<L_{\max } \quad \text { in practice }
$$

where $L_{\text {min }}=i_{\text {min }} r_{\text {min }}$ and $L_{\text {max }}=i_{\text {max }} r_{\text {max }}$

$$
0 \leq f(x, y) \leq L-1 \quad \text { and } \quad L=2^{k}
$$

Dynamic range/contrast ratio:

the ratio of the maximum detectable intensity level (saturation) to the minimum detectable intensity level (noise)

$$
\frac{I_{\max }}{I_{\min }}
$$

Representing Digital Images

(a): $f(x, y), x=0,1, \ldots, M-1, y=0,1, \ldots, N-1$
x, y : spatial coordinates \rightarrow spatial domain
(b): suitable for visualization
(c): processing and algorithm development
x : extend downward (rows)
y : extend to the right (columns)

Number of bits storing the image \uparrow
$b=M \times N \times k$

FIGURE 2.18 (a) Image plotted as a surface. (b) Image displayed as displayed as a
visual intensity array. (c) Image shown as a 2-D numerical array ($0, .5$, and 1 represent black, gray, and white,

Slides courtesy of Prof. Yan Tong

Store an Image

TABLE 2.1

Number of storage bits for various values of N and k.

$\boldsymbol{N} / \boldsymbol{k}$	$\mathbf{1}(\boldsymbol{L}=\mathbf{2})$	$\mathbf{2}(\boldsymbol{L}=\mathbf{4})$	$\mathbf{3}(\boldsymbol{L}=\mathbf{8})$	$\mathbf{4}(\boldsymbol{L}=\mathbf{1 6})$	$\mathbf{5}(\boldsymbol{L}=\mathbf{3 2})$	$\mathbf{6}(\boldsymbol{L}=\mathbf{6 4})$	$\mathbf{7}(\boldsymbol{L}=\mathbf{1 2 8})$	$\mathbf{8}(\boldsymbol{L}=\mathbf{2 5 6})$
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	$1,048,576$	$1,310,720$	$1,572,864$	$1,835,008$	$2,097,152$
1024	$1,048,576$	$2,097,152$	$3,145,728$	$4,194,304$	$5,242,880$	$6,291,456$	$7,340,032$	$8,388,608$
2048	$4,194,304$	$8,388,608$	$12,582,912$	$16,777,216$	$20,971,520$	$25,165,824$	$29,369,128$	$33,554,432$
4096	$16,777,216$	$33,554,432$	$50,331,648$	$67,108,864$	$83,886,080$	$100,663,296$	$117,440,512$	$134,217,728$
8192	$67,108,864$	$134,217,728$	$201,326,592$	$268,435,456$	$335,544,320$	$402,653,184$	$469,762,048$	$536,870,912$

Slides courtesy of Prof. Yan Tong

Spatial Resolution

Spatial resolution: smallest discernible details

- \# of line pairs per unit distance
- \# of dots (pixels) per unit distance
- Printing and publishing
- In US, dots per inch (dpi)

Newspaper \rightarrow magazines book

Large image size itself does not mean high spatial resolution!
\longrightarrow Scene/object size in the image

Slides courtesy of Prof. Yan Tong

Intensity Resolution

Intensity resolution

- Smallest discernible change in intensity levels
- Using the number of levels of intensities
- False contouring (banding) when k is small - undersampling

4
2

Isopreference Curves

a b c
FIGURE 2.22 (a) Image with a low level of detail. (b) Image with a medium level of detail. (c) Image with a relatively large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

Vary the spatial and intensity sampling simultaneously:

FIGURE 2.23
Typical
isopreference
curves for the
three types of images in
Fig. 2.22.

Slides courtesy of Prof. Yan Tong

Data heavy

1920

$\stackrel{\ominus}{\ominus}\left[\begin{array}{cccccccccc}43 & 43 & 42 & 40 & 39 & \cdots & 29 & 29 & 31 & 33 \\ 42 & 41 & 40 & 39 & 38 & \cdots & 31 & 32 & 35 & 37 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots \\ 54 & 57 & 60 & 62 & 66 & \cdots & 42 & 43 & 56 & 46\end{array}\right]$
$\stackrel{\ominus}{\odot}\left[\begin{array}{cccccccccc}129 & 129 & 129 & 129 & 128 & \cdots & 149 & 149 & 151 & 153 \\ 128 & 128 & 127 & 128 & 127 & \cdots & 151 & 152 & 155 & 157 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots \\ 146 & 146 & 148 & 148 & 148 & \cdots & 149 & 150 & 151 & 152\end{array}\right] G$
$\stackrel{\odot}{\odot}\left[\begin{array}{cccccccccc}146 & 146 & 146 & 145 & 146 & \cdots & 166 & 166 & 168 & 170 \\ 145 & 145 & 144 & 144 & 145 & \cdots & 168 & 169 & 172 & 174 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots \\ 159 & 160 & 160 & 161 & 162 & \cdots & 165 & 166 & 165 & 166\end{array}\right] \mathrm{B}$

Aliasing

- Images are not actually continuous.
- The sampling (and hardware) issues lead to a few other minor problems.

Aliasing

CCD-Chip

Aliasing

- To avoid: $f_{\text {sampling }}>2 F_{\max }$
- Nyquist Rate

Aliasing: Moiré Patterns

III-posed

- What a camera does to the 3d world...

Shigeo Fukuda

squeezes away one dimension

III-posed

- What a camera does to the 3d world...

Shigeo Fukuda

III-posed

- In trying to extract 3d structure from 2d images, vision is an ill-posed problem.

III-posed

- In trying to extract 3d structure from 2d images, vision is an ill-posed problem.

III-posed

- In trying to extract 3d structure from 2d images, vision is an ill-posed problem.

- An image isn't enough to disambiguate the many possible 3d worlds that could have produced it.

Camera Geometry

3D $\rightarrow 2 \mathrm{D}$ transformation: perspective projection

Coordinate Systems

Add coordinate systems in order to describe feature points...

Coordinate Systems

From 3d to 2d

goal: to recover information about ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) from (x, y)

