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Fundamental Problems In Robotics 

• How	to	Go	From	A	to	B	?	(Path	Planning)
• What	does	the	world	looks	like?	(mapping)

– sense	from	various	positions
– integrate	measurements	to	produce	map
– assumes	perfect	knowledge	of	position

• Where	am	I	in	the	world?	(localization)
– Sense
– relate	sensor	readings	to	a	world	model
– compute	location	relative	to	model
– assumes	a	perfect	world	model

• Together,	the	above	two	are	called	SLAM	
	 	 (Simultaneous	Localization	and	Mapping)
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Localization

• Tracking:	Known	initial	position
• Global	Localization:	Unknown	initial	position
• Re-Localization:	Incorrect	known	position
– (kidnapped	robot	problem)
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Uncertainty 

Central	to	any	real	system!
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Localization

Initial state
detects nothing:

Moves and 
detects landmark:

Moves and 
detects nothing:

Moves and 
detects landmark:

5CSCE-574 Robotics



Sensors
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• Proprioceptive	Sensors
				(monitor	state	of	vehicle-

propagate)
– IMU	(accels	&	gyros)
– Wheel	encoders
– Doppler	radar	…

• 	Noise
• Exteroceptive	Sensors
				(monitor	environment-update)

– Cameras	(single,	stereo,	
omni,	FLIR	…)

– Laser	scanner
– MW	radar
– Sonar	
– Tactile…

• 	Uncertainty



Bayesian Filter

• "Filtering"	is	a	name	for	combining	data.
• Nearly	all	algorithms	that	exist	for	spatial	reasoning	
make	use	of	this	approach
– If	you’re	working	in	robotics,	you’ll	see	it	over	and	over!

• Efficient	state	estimators
– Recursively	compute	the	robot’s	current	state	based	on	the	
previous	state	of	the	robot
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State Estimation

CSCE-574 Robotics 8

• What	is	the	robot’s	state?	
• Depends	on	the	robot
– Indoor	mobile	robot

• x=[x,	y,	θ]
– 6DOF	mobile	vehicle

• x=[x,	y,	z,	φ,	ψ,	θ]
– Manipulators

• x=[θ1,	θ2,	…	,	θn]	or
• x=[x,	y,	z,	φ,	ψ,	θ]	pose	of	end-
effector



Bayesian Filter

• Estimate	state	x	from	data	Z
– What	is	the	probability	of	the	robot	being	at	x?

• x	could	be	robot	location,	map	information,	locations	of	
targets,	etc…

• Z	could	be	sensor	readings	such	as	range,	actions,	
odometry	from	encoders,	etc…)

• This	is	a	general	formalism	that	does	not	depend	on	
the	particular	probability	representation

• Bayes	filter	recursively	computes	the	posterior	
distribution:
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Derivation of the Bayesian Filter
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Estimation of the robot’s state given the data:

The robot’s data, Z, is expanded into two types: 
observations oi and actions ai

Invoking the Bayesian theorem



Derivation of the Bayesian Filter
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Denominator is constant relative to xt

First-order Markov assumption shortens first term:

Expanding the last term (theorem of total probability):



Derivation of the Bayesian Filter
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First-order Markov assumption shortens middle term:

Finally, substituting the definition of Bel(xt-1):

The above is the probability distribution that must be 
estimated from the robot’s data



Iterating the Bayesian Filter
• Propagate	the	motion	model:

• Update	the	sensor	model:
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Compute the current state estimate before taking a sensor reading by 
integrating over all possible previous state estimates and applying the 
motion model

Compute the current state estimate by taking a sensor reading and 
multiplying by the current estimate based on the most recent motion 
history



Reminder: Bayes Rule

- Bayes theorem relates conditional probabilities

p( o | S )  =    p( S | o )p(o)   
p( S )

- So, what does this say about 

Bayes theorem

odds( o | S2 Ù S1 )  ?    

p( o Ù S )  =  p( o | S ) p( S )
- Conditional probabilities

Can we update easily ?
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Graphical Models, Bayes’ Rule and the Markov Assumption

States x1 x2

T(xj|ai, xi)

Z2

b1Beliefs

Z1Observations

a1Actions

O(zj|xi)

b2

Z2

Hidden
Observable

Bayes theorem: p(x | y) = p(y | x)p(x)
p(y)

),|(),,,,,,,|( 1111001 ttttttt axxpzzazaaxxp --- =!:Markov
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Bayes Filter
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Posterior belief
after an action

An action
 is taken

Posterior belief
after sensing

State Space

Initial belief



Representation of the Belief Function
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Parametric 
representations

Sample-based 
representations

e.g. Particle filters



Different Approaches
Discrete	approaches	(’95)
• Topological	representation	(’95)
• Uncertainty	handling	(POMDPs)
• occas.	global	localization,	recovery
• Grid-based,	metric	representation	(’96)
• global	localization,	recovery

Particle	filters	(’98)
•	Condensation	(Isard	and	Blake	’98)
•	Sample-based	representation
•	Global	localization,	recovery
•	Rao-Blackwellized	Particle	Filter

Kalman	filters	(Early-60s?)
•	Gaussians
•	approximately	linear	models
•	position	tracking
Extended	Kalman	Filter
Information	Filter
Unscented	Kalman	Filter

Multi-hypothesis	(’00)
•	Mixture	of	Gaussians
•	Multiple	Kalman	filters
•	Global	localization,	recovery
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Bayesian Filter : Requirements for 
Implementation

• Representation	for	the	belief	function
• Update	equations	
• Motion	model
• Sensor	model
• Initial	belief	state
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