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Why vision?

• Passive	(emits	nothing).
– Discreet.
– Energy	efficient.

• Intuitive.
• Powerful	(works	well	for	us,	right?)
• Long	and	short	range.
• Fast.
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So, what’s the problem?

• How	hard	is	vision?	Why	do	we	think	is	do-able?

Problems:
• Slow.
• Data-heavy.
• Impossible.
• Mixes	up	many	factors.

3CSCE 574: Robotics



Data heavy
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BFrom GoPro HERO3+ at Barbados 2015 Field Trials



Aliasing

• Images	are	not	actually	continuous.
• The	sampling	(and	hardware)	issues	lead	to	a	
few	other	minor	problems.
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Aliasing
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Aliasing

• To	avoid:	fsampling >	2Fmax
– Nyquist	Rate
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Aliasing: Moiré Patterns
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• What	a	camera	does	to	the	3d	world...
Shigeo Fukuda

squeezes	away	one	dimension

Ill-posed
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http://www.psychologie.tu-dresden.de/i1/kaw/diverses	Material/www.illusionworks.com/html/art_of_shigeo_fukuda.html
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• What	a	camera	does	to	the	3d	world...
Shigeo Fukuda

Ill-posed
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Ill-posed

• 	In	trying	to	extract	3d	structure	from	2d	images,	
vision	is	an	ill-posed	problem.
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• 	In	trying	to	extract	3d	structure	from	2d	images,	
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Ill-posed

• 	In	trying	to	extract	3d	structure	from	2d	images,	
vision	is	an	ill-posed	problem.

– An	image	isn’t	enough	to	disambiguate	the	many	
possible	3d	worlds	that	could	have	produced	it.
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Difficult scenarios
• In	certain	settings,	such	as	the	underwater,	robotic	vision	is	
particularly	challenging
– Different	lighting	conditions
– Color	loss
– Hazing	and	blur
– Texture	loss
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doesn’t	 need	a	full	interpretation	of	available	images

does	 need	information	about	what	to	do...

•avoiding	obstacles	(or	predators)

•pursuing	objects

•localizing	itself

•Mapping

•finding	targets

•reasoning	about	the	world	…

“This	is	Prof.	X	in	his	office	offering	me	a	cup	of	iced	tea.”

“Run	Away!!”

reactive

deliberative

environmental	
interactions

What does a robot need ?
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Key problems
• Recognition:
– What	is	that	thing	in	the	picture?
– What	are	all	the	things	in	the	image?

• Scene	interpretation
– Describe	the	image?

• Scene	“reconstruction”:
– What	is	the	3-dimensional	layout	of	the	scene?
– What	are	the	physical	parameters	that	gave	rise	to	the	image?
– What	is	a	description	of	the	scene?

Notion	of	an	“inverse	problem.”
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(1)		Image	streams
simplified	via	generality

simplified	via	specificity

(2)		Stereo	vision (or	beyond...)

(3)		Incorporating	vision	within	robot	control

Visual	“servoing”3d	reconstruction

A	brief	overview	of	robotic	vision	processing...

Robot vision sampler
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3d reconstruction
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Visual Servoing
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Computer vision algorithms

• Image	processing
• Geometric	computer	vision
• Semantic	computer	vision

• It	is	fundamental	first	to	understand	image	
formation
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center of projection

focal length

object

image plane

Camera Geometry

3Dà2D	transformation:	perspective	projection
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canonical	axes

f

pixel	coordinates

optical	axis

Add	coordinate	systems	in	order	to	
describe	feature	points...	

z

x
y

u
v

object	coordinates

v	
(row)

u	(col)

principal	
point

Z

x

y

at	the	C.O.P.

Coordinate Systems
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f

pixel	coordinates

z

x
y

u
v

object	coordinates

(X,Y,Z)			in	canonical	coordsimage	can.	coords:	(x,y)

canonical	axes

Coordinate Systems
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x	=			
f	X			
Z		 y	=			

f	Y			
Z		

a	nonlinear	transformation

f

pixel	coordinates

z

x
y

u
v

object	coordinates

(X,Y,Z)			in	canonical	coordsimage	can.	coords:	(x,y)

canonical	axes

goal:	to	recover	information	about	(X,Y,Z)	from	
(x,y)

From 3d to 2d
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Camera Calibration

• Camera	Model
– [u	v	1]	Pixel	coords
– 																										World	coords

• Intrinsic	Parameters
– 																																focal	lengths	in	pixels
– 					skew	coefficient
– 									focal	point

• Extrinsic	Parameters
– 											Rotation	and	Translation
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Camera Calibration
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Existing	packages	in	MATLAB,	OpenCV,	etc



Rectified Image Sample

CSCE 574: Robotics 27

Unrectified Rectified

From Clearpath Husky Axis M1013 camera



Rectified Image Sample
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Unrectified Rectified

From Parrot ARDrone 2.0 front camera



Rectified Image Sample
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Unrectified Rectified

From GoPro HERO3+ at Barbados 2015 Field Trials



ReRectified Image Sample
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Rectified ReRectified

From Aqua front camera at Barbados 2013 Field Trials



Gaussian Blur

=

*
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Gaussian Blur and Noise
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Gaussian Blur, Noise, Sobel
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Image Downsampling

34CSCE 574: Robotics



Thresholded image
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Edge detection
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Correspondence Problem
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From Raspberry PI camera at Barbados 2016 Field Trials



Correspondence
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From I1 From I2

?



Fiduciary Markers/Fiducial

Fourier Tag
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Good Feature
• Invariant	to	transformations
• Unique
• Efficient	to	compute
• Good	precision	and	high	recall
• Several	Alternatives:
– Harris	Corners	(OpenCV)	
– SURF	(OpenCV)
– SIFT
– ORB
– etc
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Harris Corners
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Harris Corners
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SIFT

44CSCE 574: Robotics



SIFT
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SURF
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SURF
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ORB
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ORB
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Outliers
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Outliers Inliers



Mosaic
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3D Sparse reconstruction
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3D Sparse reconstruction
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Internet Photos 
(“Colosseum”)

Reconstructed 3D cameras and 
points

Source: https://grail.cs.washington.edu/rome/



Feature quality
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Feature quality
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Feature quality
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Feature quality
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Egomotion

CSCE 574: Robotics 58



Visual Odometry/Structure from Motion
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Image	
stream

Feature	
detection

Feature	
matching	
(tracking)

Motion	
estimation Optimization



Optical Flow

• Definition:
– the	pattern	of	apparent	motion	of	objects,	surfaces,	
and	edges	in	a	visual	scene	caused	by	the	relative	
motion	between	an	observer	(an	eye	or	a	camera)	and	
the	scene.
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Optical Flow Field

61CSCE 574: Robotics



Information	about	image	motion	rather	than	the	scene.				
This	is	a	classic	reconstruction	problem.		

This	next	step	might	be	to	use	the	image	motion	to	infer	scene	
motion,	robot	motion	or	3D	layout.

time	sequence	of	images

Optical flow
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Information	about	scene	motion	rather	than	the	scene.

an	“image	cube”

I(x,y,t)

Optical flow
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Information	about	scene	motion	rather	than	the	scene.

optical	flow How	?

Optical flow
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99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

90 90 70 40 25

 90 70 40 40 25

 90 70 40 40 25

 90 70 40 40 20

 70 50 40 30 15

I(x,y,t)

Optical Flow
• By	measuring	the	direction	that	intensities	are	moving...

• We	can	estimate	things...
CSCE 574: Robotics 65



99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

90 90 70 40 25

 90 70 40 40 25

 90 70 40 40 25

 90 70 40 40 20

 70 50 40 30 15

By	measuring	the	direction	that	intensities	are	moving...

I(2,-1,0)

I(0,0,1)

I(0,0,0
)

I(x,y,t)
I(x,y,0)

I(x,y,1)

We	can	estimate	things	... =	Ix	dx
dI at	(0,0,0)

Optical Flow
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99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

90 90 70 40 25

 90 70 40 40 25

 90 70 40 40 25

 90 70 40 40 20

 70 50 40 30 15

By	measuring	the	direction	that	intensities	are	moving...

I(2,-1,0)

I(0,0,1)

I(0,0,0
)

I(x,y,t)
I(x,y,0)

I(x,y,1)

We	can	estimate	things	like =	Ix	 = = I(1,0,0)	-	I(0,0,0)	DI
Dxdx

dI at	(0,0,0)
1	-	0

=	-30

Optical Flow
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99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

90 90 70 40 25

 90 70 40 40 25

 90 70 40 40 25

 90 70 40 40 20

 70 50 40 30 15

By	measuring	the	direction	that	intensities	are	moving...

I(2,-1,0)

I(0,0,1)

I(0,0,0
)

I(x,y,t)
I(x,y,0)

I(x,y,1)

We	can	estimate	things	like
=	Ix	dx

dI =	Iy	dy
dI =	It	dt

dI so...

Optical Flow



Let		I(x,y,t)	be	the	sequence	of	images.
Simplest	assumption	(constant	brightness	constraint):

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)

(x,y,t
)

99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

Measuring Optical Flow
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Let		I(x,y,t)	be	the	sequence	of	images.
Simplest	assumption	(constant	brightness	constraint):

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)

Reminder:						f(x	+	dx)	=	f(x)	+	f’(x)	dx	+	f’’(x)	dx2	/2		+		...	

(x,y,t
)

99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

Measuring Optical Flow
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Let		I(x,y,t)	be	the	sequence	of	images.
Simplest	assumption	(constant	brightness	constraint):

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)

I(x,y,t)		=		I(x,y,t)	+		Ix	dx	+	Iy	dy	+	It	dt	+	2nd	deriv.	+	higher

Reminder:						f(x	+	dx)	=	f(x)	+	f’(x)	dx	+	f’’(x)	dx2	/2		+		...	

(x,y,t
)

99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

Measuring Optical Flow
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Let		I(x,y,t)	be	the	sequence	of	images.
Simplest	assumption	(constant	brightness	constraint):

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)

I(x,y,t)		=		I(x,y,t)	+		Ix	dx	+	Iy	dy	+	It	dt	+	2nd	deriv.	+	higher

0		=		Ix	dx	+	Iy	dy	+	It	dt

Reminder:						f(x	+	dx)	=	f(x)	+	f’(x)	dx	+	f’’(x)	dx2	/2		+		...	

ignore	these	terms

(x,y,t
)

99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

Measuring Optical Flow
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Let		I(x,y,t)	be	the	sequence	of	images.
Simplest	assumption	(constant	brightness	constraint):

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)

I(x,y,t)		=		I(x,y,t)	+		Ix	dx	+	Iy	dy	+	It	dt	+	2nd	deriv.	+	higher

0		=		Ix	dx	+	Iy	dy	+	It	dt

Reminder:						f(x	+	dx)	=	f(x)	+	f’(x)	dx	+	f’’(x)	dx2	/2		+		...	

ignore	these	terms

-It		=		Ix								+	Iy	dt
dx

dt
dy intensity-flow	equation

(x,y,t
)

99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

good	and	bad...

Measuring Optical Flow
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-It		=		Ix								+	Iy	dt
dx

dt
dy

• The	intensity-flow	equation	provides	only	one	constraint	
on	two	variables	(	x-motion	and	y-motion)

It	is	only	possible	to	find	optical	flow	in	one	
direction...

The “aperture” problem
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It	is	only	possible	to	find	optical	flow	in	one	direction...
at	any	single	point	in	the	image	!

Smoothing	can	be	done	by	incorporating	neighboring	points’	information.

img1 img2

raw	
optical	
flow

smoothed	
for	ten	
iterations

The “aperture” problem
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Observations & Warnings

• Assume	the	scene	itself	is	static.
• Find	matching	chunks	in	the	images.
• An	instance	of	correspondence.
BUT
• World	really	isn’t	static.
• Lightning	might	change	even	in	a	static	scene.
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Features vs Optical Flow

• Feature-based	methods
– Detect	features	(corners,	textured	areas),	extract	descriptors,	and	
track	them

– Sparse	motion	fields,	but	possibly	robust	tracking
– Suitable	especially	when	image	motion	is	large	(10s	of	pixels)

• Direct	methods	(optical	flow)
– Directly	recover	image	motion	from	spatio-temporal	image	
brightness	variations

– Global	motion	parameters	directly	recovered	without	an	
intermediate	feature	motion	calculation

– Dense	motion	fields,	but	more	sensitive	to	appearance	variations
– Suitable	for	video	and	when	image	motion	is	small	(<	10	pixels)
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Camera and IMU
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From drifter with Raspberry PI Camera and Pololu MinIMU-9 v3 at Barbados 2016 Field Trials



• If	interpreting	a	single	image	is	difficult...	What	about	more	?!

multiple	cameras

multiple	times

A Vision “solution”
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Stereo Vision: Pinhole Camera

p

focal points

image plane 
f1

image plane 
f2

O2

O1
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Stereo Vision: Pinhole Camera

p

focal points

image plane 
f1

p’1

image plane 
f2

O2

O1 p’2
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Stereo Vision: Pinhole Camera

p

focal points

image plane 
f1

p’1

image plane 
f2

(part of) 
epipolar plane

epipolar line

O2

O1 p’2

82CSCE 574: Robotics



Stereo Vision: Pinhole

x2
x1

px1

disparity: d=px1-px2

px2

baseline b
D

Depth: D=fb/d

f
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Stereo Vision: Pinhole

p

x2
x1

px1

px2

D

f

a1

a2

q2

q1

q2

q1
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Baseline 

•What’s	the	optimal	baseline?
– Too	small:		large	depth	error
– Too	large:		difficult	search	problem
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Image plane

Small Baseline Large Baseline

Pixel size

O1 O2 O1 O2

p



Baseline
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GoPro 3D HERO System source: http://www.cvlibs.net/datasets/kitti

b=3.2 cm b=54 cm



Matching Left and Right
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3D reconstruction
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Stereo: Disparity Map

89CSCE 574: Robotics



Depth Map in a City
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Another Example (Hole Filling)

Cloth	Parameters	and	Motion	Capture	by	David	Pritchard
B.A.Sc.,	University	of	Waterloo,	2001
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Stereo Vision

• Large	number	of	algorithms	out	there:
http://vision.middlebury.edu/stereo/

	rank	43	different	algorithms.
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http://vision.middlebury.edu/stereo/


Object recognition
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Pedestrian and car detection

Lane detection

Coral classification

source: http://www.cs.cornell.edu/courses/cs4670/2013fa/

From GoPro 3D Hero at Barbados 2015 Field Trial



Bag of words
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Object Bag	of	‘words’

source: http://wikimedia.org



Appearance-based place recognition
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source: http://www.robots.ox.ac.uk/~mjc



Deep learning based classification
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Computer Vision Books

• Richard	Szeliski,	“Computer	Vision:	Algorithms	
and	Applications”,	Springer,	2010

• Richard	Hartley	and	Andrew	Zisserman,	
“Multiple	View	Geometry	in	Computer	Vision”,	
Cambridge	University	Press,	2004

• David	Forsyth	and	Jean	Ponce,	“Computer	
Vision:	A	Modern	Approach”,	Pearson,	2011
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Nice Classes

• Noah	Snavely	–	Introduction	to	Computer	Vision	
http://www.cs.cornell.edu/courses/cs4670/20
13fa/lectures/lectures.html

• Steve	Seitz	and	Rick	Szeliski	–	Computer	Vision	
http://courses.cs.washington.edu/courses/cse5
76/08sp/
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