CSCE 574 ROBOTICS

Coordinate Frames

Coordinate Frames

From:
https://www.researchgate.net/figure/Schematic-of-a-differential-drive-mobile-robot-equipped-with-a-monocular-camera fig1 327658659

3D reference frames

Why do we need many frames?

- Defining and representing frames of reference and reasoning about how to express quantities in one frame to quantities in the other.

Left vs right-handed

A convention for right-handed

Colored convention

Color convention for frames

Always provide a frame diagram

[1] Velodyne, [2] Ladybug3 (actual location: center of camera system), [3] Ladybug3 Camera 5, [4] Right Riegl, [5] Left Riegl, [6] Body Frame (actual location: center of rear axle)

Convention for mobile robot

https://www.ros.org/reps/rep-0105.html https://www.ros.org/reps/rep-0103.html
bas' suai
whecl_'eii_! !nk

Convention for mobile robot

https://www.ros.org/reps/rep-0105.html https://www.ros.org/reps/rep-0103.htm

Example

Odom
Base Link

World

Example

Odom
\qquad
World

Rigid body motion

- Motion that can be described by a rotation and translation
- All the parts making up the body move in unison, and there are no deformations
- Representing rotations, translations, and vectors in a given frame of reference is often a source of frustration and bugs in robot software because there are so many options

Rigid body transformations in \mathbb{R}^{3}

- The most general coordinate transformation from B to A has the following form

Rotation of B with respect to A

Translation of the origin of B wrt origin of A

Homogeneous transformations

$$
{ }^{A} \mathbf{A}_{B}=\left[\begin{array}{c|c}
{ }^{A} \mathbf{R}_{B} & { }^{A} \mathbf{r}^{O^{\prime}} \\
\hline \mathbf{0}_{1 \times 3} & 1
\end{array}\right]
$$

$$
{ }^{B} \mathbf{A}_{C}=\left[\begin{array}{c|c}
{ }^{B} \mathbf{R}_{C} & { }^{B} \mathbf{r}^{O^{\prime \prime}} \\
\hline \mathbf{0}_{1 \times 3} & 1
\end{array}\right]
$$

Composition of transformations

$$
\begin{aligned}
{ }^{A} \mathbf{A}_{C} & ={ }^{A} \mathbf{A}_{B}{ }^{B}{ }^{B} \mathbf{A}_{C} \\
{ }^{A} \mathbf{A}_{C} & =\left[\begin{array}{c|c}
{ }^{A} \mathbf{R}_{C} & { }^{A} \mathbf{r}^{O^{\prime \prime}} \\
\hline \mathbf{0}_{1 \times 3} & 1
\end{array}\right] \\
& =\left[\begin{array}{c|c}
{ }^{A} \mathbf{R}_{B} & { }^{A} \mathbf{r}^{O^{\prime}} \\
\hline \mathbf{0}_{1 \times 3} & 1
\end{array}\right] \times\left[\begin{array}{c|c}
{ }^{B} \mathbf{R}_{C} & { }^{B} \mathbf{r}^{O^{\prime \prime}} \\
\hline \mathbf{0}_{1 \times 3} & 1
\end{array}\right] \\
& =\left[\begin{array}{c|c}
{ }^{A} \mathbf{R}_{B} \times{ }^{B} \mathbf{R}_{C} & { }^{A} \mathbf{R}_{B} \times{ }^{B} \mathbf{r}^{O^{\prime \prime}}+{ }^{A} \mathbf{r}^{O^{\prime}} \\
\hline \mathbf{0}_{1 \times 3} & 1
\end{array}\right]
\end{aligned}
$$

More generally

$$
{ }^{0} \mathbf{T}_{n}={ }^{0} \mathbf{T}_{1}{ }^{1} \mathbf{T}_{2} \ldots{ }^{n-1} \mathbf{T}_{n}
$$

Exercise: Example of transformations

- The frame F_{l} with respect to F_{0} is translated of 1 along x_{0} and of 3 along y_{0}, moreover it is rotated by 30 degrees about z_{0}

What is the transformation matrix from F_{1} to F_{0} ?

Exercise: Example of transformations

- The frame F_{I} with respect to F_{0} is translated of 1 along x_{0} and of 3 along y_{0}, moreover it is rotated by 30 degrees about z_{0}

What is the transformation matrix from F_{1} to F_{0} ?

$$
{ }^{0} \mathbf{T}_{1}=\left[\begin{array}{cccc}
\cos \frac{\pi}{6} & -\sin \frac{\pi}{6} & 0 & 1 \\
\sin \frac{\pi}{6} & \cos \frac{\pi}{6} & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Exercise: Example of transformations

- Consider now a point defined in F_{1} by

$$
{ }^{1} \mathbf{p}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

What are its coordinates in F_{0} ?

Exercise: Example of transformations

- Consider now a point define in F_{l} by

$$
{ }^{1} \mathbf{p}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

What are its coordinates in $F_{0} ? \quad{ }^{0} \mathbf{p}={ }^{0} \mathbf{T}_{1}{ }^{1} \mathbf{p}=\left[\begin{array}{c}2.232 \\ 4.866 \\ 0 \\ 1\end{array}\right]$

Inverse transformation

- Once the position/orientation of F_{I} with respect to F_{0} are known, defined by the homogeneous transformation matrix ${ }^{0} \boldsymbol{T}_{1}$, it is simple to compute the inverse transformation ${ }^{1} \boldsymbol{T}_{0}$, defining the position/orientation of F_{0} with respect to F_{1}

$$
{ }^{1} \mathbf{T}_{0}=\left[\begin{array}{ccc}
{ }^{0} \mathbf{R}_{1}^{T} & -{ }^{0} \mathbf{R}_{1}^{T} & { }^{0} \mathbf{r}^{O^{\prime}} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]
$$

Exercise: inverse transformation

- Given

$$
\mathbf{T}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Compute its inverse transformation

Exercise: inverse transformation

- Given

$$
\mathbf{T}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Compute its inverse transformation

$$
\mathbf{T}^{-1}=\left[\begin{array}{cccc}
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & -2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Post-multiplication vs. Pre-multiplication

- Transform with respect to local origin and basis (post multiplication)
- Transform with respect to global origin and basis (pre multiplication)

$$
T^{\prime}=R \times T
$$

Similar in concept as Euler mobile vs fixed angle We use the post multiplication

