

CSCE 574 ROBOTICS

Marine Robotics

Ioannis Rekleitis

What are robots best suited for?

- Environments that are dangerous.
- Environments that are inaccessible.
- Environments that are taxing.
- Environments are expensive to access.
- Environments that are inhospitable.

Marine Environment: inaccessible, dangerous, costly, demanding.

As we all know, most of the world is undersea, yet it's the environment on earth we understand the least well!

Coral Reefs

Oceans: 70% of earth's surface.

Reefs: Greatest diversity / area of any marine ecosystem

4-5% of all species (91 000) found on coral reefs
Significant to the health of the planet:
1/2 of the calcium that enters the world's oceans
/year is taken up and bound into Coral Reefs as
Calcium Bicarbonate

World Distribution

Coral reefs are found in polar, temperate and tropical waters Highest diversity of species in tropics Found in 20 degree C surface isotherm Optimal temperature for coral is 23-25 degrees C.

Atlantic

Sea fan

More common in Atlantic:

Sea Whip

Dominant coral types: Branching coral (3 sp) Fire Coral

Why Study Coral Reefs?

- Most biologically diverse and sensitive marine ecosystem
- Dramatically altered by humans
- By 1998, 27% of reefs were destroyed
 - 16% was from coral
 bleaching event
 (El Nino)

Coral Reefs

- Reefs are regions of *exceptional* biodiversity.
- 20% of the world's reefs have been destroyed.
- 24% of reefs are under imminent threat of collapse due to human pressure, 26% under longer term threat of collapse! Dec. 2005 there was a terrible coral bleaching (and destruction) in the Caribbean.
 95% of Jamaica's reefs are dead or dying.
- If we want to make things better, we need to be able to measure the changes!
- This is taxing, error-prone, tiring and dangerous.

Underwater vehicles

1 Ultra Trench

UT-1 Ultra Trencher 7.8 x 7.8 x 5.6 meters

Autonomous Benthic Explorer (ABE)

1200 pounds and a little over 2 meters long.

Turtle like Robot

Lobster like Robot

Glider UW Robot

Glider UW Robot

Glider UW Robot

Autonomous Underwater Vehicles (AUV) Hugin

UAV: Remus

UAV: IVER

UAV: IVER

Sensors

- Vision
- IMU
- Acoustic Doppler current Profiler (ADCP)
- Doppler Velocity Log: (DVL)
- Echosounder (single beam sonar)
- Scanning Sonar

- Sidescan Sonar
- Multibeam Sonar
- Ultra-Short Baseline Positioning (USBL)
 - Long Baseline Positioning (LBL)
 - Conductivity Depth Temperature (CDT)
 - Salinity, PH, Turbidity

Echo-sounding principle

By Brandon T. Fields (cdated) via the US Army Corps of Engineers - EM 1110-2-1003, Manual of Hydrographic Surveying, based upon Principle_of_SBES.jpg by en:User:Mredmayne.This vector image was created with Inkscape., Public Domain, https://commons.wikimedia.org/w/index.ph p?curid=23357601

CSCE 574: Robotics

Side-scan Sonar

By Subzone OÜ - Muinsuskaitseamet, CC BY-SA 4.0, https://commons.wikimedia.org/w/ind ex.php?curid=38704724

CSCE 574: Robotics

By USGS & Mysid - Vectorized in Inkscape by Mysid from

http://woodshole.er.usgs.gov/operations/sfmapping/ mages/sonartracktextnotow.jpg., Public Domain, https://commons.wikimedia.org/w/index.php?curid=2

Multibeam Sonar

By U.S. Navy photo - This Image was released by the United States Navy with the ID 030411-N-0000X-001 (next).This tag does not indicate the copyright status of the attached work. A normal copyright tag is still required. See Commons:Licensing for more Public Domain, https://commons.wikimedia.org/ w/index.php?curid=8175022

Long Baseline Positioning

Sensors: Multi-beam Sonar

Enabling Autonomous Capabilities in Underwater Robotics

 This work was presented at the International Conference on Intelligent Robots and Systems (IROS), 2008, at Nice, France

Overview

Technologies to increase the level of autonomy

- AQUA description
- Guidance and Control
 - Hovering
- Terrain Classification
- HRI
- Underwater Sensor Nodes
 - Video Mosaics

About Aqua

- Hexapod with flippers, descendant of RHex
- High mobility (can also walk, hover, etc)
- On-board cameras, IMU, computers
- Power autonomous for \sim 5+ hours
- Application: surveillance and monitoring of coral reefs, working in conjunction with marine biologists(s).

AQUA Components

AQUA objectives

- AQUA is about developing a <u>portable</u> robot that can <u>walk</u> and <u>swim</u>, and which exhibits the ability to use vision and/or sound to know where it is and what is near it.
- The robot could be used, for example, to survey and monitor the conditions on a coral reef. By being able to land on the bottom and move around, the robot can make regular observations without disturbing the natural organisms.
- The ability to walk, swim and use vision underwater is unique to AQUA (derived from RHex [Buehler et al.])
- Allows for efficient station-keeping and surveillance.

Original Project objectives

- Survey and monitor the conditions on coral reefs
- Ability to walk on land, swim, and use vision underwater
- Ability to land on the sea floor

Autonomy

Operation Methods

- Tele-operation
- Partial Autonomy-HRI
- Full Autonomy

Guidance

- Small, light, moderate-cost robot
- Learn trajectories by (initially) <u>following a diver</u>
- Diver specifies specific actions as desired
- Diver specifies where and how data is collected

Alternative Entry Technique

Hovering illustration

- •Hovering combines two distinct leg motions.
- •Can also selectively tune thrust direction to minimize disturbances
- •Combining hovering with motion can lead to interesting planning issues

Controllers: Objectives

- Provide trajectory tracking capabilities to the vehicle
 - Determine the required paddle force
 - Determine the appropriate paddle motion
- Stabilize the vehicle in the presence of disturbances

Linear Model

Nonlinear model is linearized to allow use of linear systems theory

- State vector $\mathbf{x} = u \ v \ w \ p \ q \ r \ x \ y \ z \ \varphi \ \theta$
- Force vector $\boldsymbol{\tau} = \begin{bmatrix} f_{x1} & \dots & f_{x6} & f_{z1} & \dots & f_{z6} \end{bmatrix}^T$

Model Based Control

- PID controllers used
- Both Linear and Non-Linear models used to augment the PID controller

Terrain identification

- Vehicle is capable of using contact forces to identify terrains
- This allows gaits to be selected or adapted as a function of terrain type

Aqua Sensing: Vision, IMU, Depth

Potential Issues in Underwater Vision

Lighting variations

Backscatter

Light absorption

Vision-Based HRI

- Easier than conventional methods (e.g. type, touch screens)
- Requires no extra input mechanisms or sensors other than a camera
- Advantages of machine vision
 - Problems lie in interpreting 'gestures'
 - Fiducials as tokens

Corrected Image Content

Noisy data collected from an underwater node CSCE 574: Robotics

Visual Language

- Gestural robot programming language
- Real-time interpreter
- •Low-level constructs: robot action commands (e.g. MOVE_FORWARD)
- High-level constructs: loops, iterators, functions
- Commands coded in scripting language (Lua)

Features

```
for (i = 0; i < 4; i++) {
    angle = 90;
    duration = 2;
    Turn_Left(angle, duration);
    Move_Forward(duration);
}</pre>
```

4 REPEAT 9 0 ANGLE 2 DURATION TURN_LEFT MOVE_FORWARD END

EXECUTE

C-like Pseudocode (38 input tokens) RoboChat snippet (11 input tokens)

•Use of Reverse Polish notation to minimize unnecessary syntax artefacts (e.g. <u>then, {...}</u> etc)

812

ŝ,

X

1708 **7**9

 $|\mathbf{k}|$

 \mathfrak{A}

1372 G

£2,

봕

 \mathbf{x}

12

Current Mode: HRI using Tags

Aqua – Lobster Interaction

Autonomous Surface Vehicles

LIQUID ROBOTICS.

Wave Glider

ASV: Autonomous Mokai (WHOI)

ASV: Autonomous Mokai (SC)

OCEAN LAB: Data Diver Swarm

SWARM ROBOTICS

Drift Nodes

- Monitor, shallow coral reefs.
- Improve estimation accuracy

Hardware Implementation

- Hardware
 - Computing Unit Raspberry Pi 2
 - IMU Pololu MinIMU-9 V3
 - GPS Adafruit Ultimate Breakout
 - WiFi Edimax USB Adapter
 - Camera Raspberry Pi Camera
- Software
 - OS Raspbian Wheezy
 - ROS Standardized data and communications transmitting
 - GPSD Communication with GPS
 - minimu9-ahrs Communicate with IMU
 - Various shell and Python scripts to manage node operation

Total cost ~ \$250

Drifter GPS Trajectories

Hardware Implementation

2016

Wide Field of View

• Wave action results in wider field of view coverage

Surge

Sample GPS Location

Shallow Areas

Shallow Areas

60

Deeper Area

Deeper Area

Deeper Area

Shallow Coral Classification using Deep Learning

• Using a CNN

Coral Reef Monitoring by Heterogeneous Robots

Shipwreck Mapping

Shipwreck Mapping

Robot's Eye View

Shipwreck Mapping

Cave Mapping

Underwater Cave Mapping using Stereo Vision

Nick Weidner, Sharmin Rahman, Alberto Quattrini Li, and Ioannis Rekleitis

Questions

