
Ioannis Rekleitis

Path	Planning

Outline

• Path	Planning
– Visibility	Graph
– Potential	Fields
– Bug	Algorithms
– Skeletons/Voronoi Graphs
– C-Space

2CSCE-574 Robotics

Motion Planning
• The	ability	to	go	from	A to	B
– Known	map	– Off-line	planning
– Unknown	Environment	–Online	planning
– Static/Dynamic	Environment

CSCE-574 Robotics 3

qgoalqinit

qgoal

qgoal qinit

qinit

Path Planning

Robot Map

World

4CSCE-574 Robotics

Path Planning

Robot Map

World
•Indoor/Outdoor
•2D/2.5D/3D
•Static/Dynamic
•Known/Unknown
•Abstract (web)

5CSCE-574 Robotics

Path Planning

Robot Map

World

•Mobile
ØIndoor/Outdoor
ØWalking/Flying/Swimming

•Manipulator
•Humanoid
•Abstract

6CSCE-574 Robotics

Path Planning

Robot Map

World

•Topological
•Metric
•Feature Based
•1D,2D,2.5D,3D

7CSCE-574 Robotics

Path Planning

Robot Map

World

•Topological
•Metric
•Feature Based
•1D,2D,2.5D,3D

•Mobile
ØIndoor/Outdoor
ØWalking/Flying/Swimming

•Manipulator
•Humanoid
•Abstract

•Indoor/Outdoor
•2D/2.5D/3D
•Static/Dynamic
•Known/Unknown
•Abstract (web)

8CSCE-574 Robotics

Path Planning: Assumptions
• Known	Map
• Roadmaps	(Graph	representations)
• Polygonal	Representation

qgoal

qinit

9CSCE-574 Robotics

Visibility Graph
• Connect	Initial	and	goal	locations	with	all	the	visible	vertices

qgoal

qinit

10CSCE-574 Robotics

Visibility Graph
• Connect	initial	and	goal	locations	with	all	the	visible	vertices
• Connect	each	obstacle	vertex	to	every	visible	obstacle	vertex

qgoal

qinit

11CSCE-574 Robotics

Visibility Graph
• Connect	initial	and	goal	locations	with	all	the	visible	vertices
• Connect	each	obstacle	vertex	to	every	visible	obstacle	vertex
• Remove	edges	that	intersect	the	interior	of	an	obstacle

qgoal

qinit

12CSCE-574 Robotics

Visibility Graph
• Connect	initial	and	goal	locations	with	all	the	visible	vertices
• Connect	each	obstacle	vertex	to	every	visible	obstacle	vertex
• Remove	edges	that	intersect	the	interior	of	an	obstacle
• Plan	on	the	resulting	graph

qgoal

qinit

13CSCE-574 Robotics

Visibility Graph
• An	alternative	path
• Alternative	name:	“Rubber	band	algorithm”

qgoal

qinit

14CSCE-574 Robotics

Major Fault
• Point	robot	
• Path	planning	
like	that	
guarantees	to	hit	
the	obstacles

15CSCE-574 Robotics

Path Planning
Potential Field methods

• compute a repulsive force away from obstacles

CSCE-574 Robotics 16

Local techniques
Potential Field methods

• compute a repulsive force away from obstacles

• compute an attractive force toward the goal

CSCE-574 Robotics 17

Local techniques
Potential Field methods

• compute a repulsive force away from obstacles

• compute an attractive force toward the goal

let the sum of the forces control the robot

key advantages?
CSCE-574 Robotics 18

Local techniques
Potential Field methods

• compute a repulsive force away from obstacles

• compute an attractive force toward the goal

let the sum of the forces control the robot

To a large extent, this is
computable from sensor readings

CSCE-574 Robotics 19

Sensor Based Calculations

CSCE-574 Robotics 20

Major Problem?

CSCE-574 Robotics 21

Local Minima!

Fobst

Fgoal

CSCE-574 Robotics 22

Simulated Annealing

• Every so often add some random force

CSCE-574 Robotics 23

Limited-knowledge path planning

• known direction to goal

• otherwise local sensing

walls/obstacles encoders

•“reasonable” world
1. finitely many obstacles in any finite

disc

2. a line will intersect an obstacle
finitely many times

Goal

Start

• Path planning with limited knowledge
– Insect-inspired “bug” algorithms

24CSCE-574 Robotics

Not truly modeling bugs...
Insects do use several cues for navigation:

neither are the current bug-
sized robots

visual landmarks

polarized light

chemical sensing

Other animals use information from

magnetic fields

electric currents

temperature

they’re not ears...

migrating bobolinkbacteria
25CSCE-574 Robotics

Bug Strategy

“Bug 0” algorithm

• known direction to goal

• otherwise only local sensing
walls/obstacles encoders

1) head toward goal

2) follow obstacles until you can
head toward the goal again

3) continue

Insect-inspired “bug” algorithms

CSCE-574 Robotics 26

assume a left-
turn robot

Does It Work?

27CSCE-574 Robotics

“Bug 1” algorithm

• known direction to goal

• otherwise only local sensing
walls/obstacles encoders

1) head toward goal

Insect-inspired “bug” algorithms

Bug 1

CSCE-574 Robotics 28

“Bug 1” algorithm

• known direction to goal

• otherwise only local sensing
walls/obstacles encoders

1) head toward goal

2) if an obstacle is encountered,
circumnavigate it and remember
how close you get to the goal

Insect-inspired “bug” algorithms

Bug 1

CSCE-574 Robotics 29

“Bug 1” algorithm

• known direction to goal

• otherwise only local sensing
walls/obstacles encoders

1) head toward goal

2) if an obstacle is encountered,
circumnavigate it and remember
how close you get to the goal

3) return to that closest point (by
wall-following) and continue

Insect-inspired “bug” algorithms

Vladimir Lumelsky & Alexander Stepanov Algorithmica 1987

Bug 1

CSCE-574 Robotics 30

Distance Traveled What are bounds on the path
length that the robot takes?

Lower and upper bounds?

Available Information:
D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:

Upper bound:

Bug 1 analysis

CSCE-574 Robotics 31

D

P1

P2

Distance Traveled What are bounds on the path
length that the robot takes?

Lower and upper bounds?

Available Information:
D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound: D
Upper bound:

Bug 1 analysis

CSCE-574 Robotics 32

D

P1

P2

Distance Traveled What are bounds on the path
length that the robot takes?

Lower and upper bounds?

Available Information:
D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound: D

Upper bound: D + 1.5 S Pii

How good a bound?

How good an algorithm?

Bug 1 analysis

CSCE-574 Robotics 33

D

P1

P2

“Bug 2” algorithmCall the line from the starting
point to the goal the s-line

A better bug?

CSCE-574 Robotics 34

“Bug 2” algorithmCall the line from the starting
point to the goal the s-line

1) head toward goal on the s-line

A better bug?

CSCE-574 Robotics 35

“Bug 2” algorithmCall the line from the starting
point to the goal the s-line

1) head toward goal on the s-line

2) if an obstacle is in the way,
follow it until encountering the s-
line again.

A better bug?

CSCE-574 Robotics 36

“Bug 2” algorithm

1) head toward goal on the s-line

2) if an obstacle is in the way,
follow it until encountering the s-
line again.

3) Leave the obstacle and continue
toward the goal

OK ?

s-line

A better bug?

CSCE-574 Robotics 37

“Bug 2” algorithm

1) head toward goal on the s-line

2) if an obstacle is in the way,
follow it until encountering the s-
line again closer to the goal.

3) Leave the obstacle and continue
toward the goal

OK ?

A better bug?

CSCE-574 Robotics 38

Goal

Start

Distance Traveled What are bounds on the path
length that the robot takes?

Lower and upper bounds?

Available Information:
D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:

Upper bound:

Bug 2 analysis

CSCE-574 Robotics 39

Goal

Start

Distance Traveled What are bounds on the path
length that the robot takes?

Lower and upper bounds?

Available Information:
D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:

Upper bound:

Ni = number of s-line intersections
with the i th obstacle

Bug 2 analysis

CSCE-574 Robotics 40

Goal

Start

Distance Traveled What are bounds on the path
length that the robot takes?

Lower and upper bounds?

Available Information:
D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound: D
Upper bound:

Ni = number of s-line intersections
with the i th obstacle

Bug 2 analysis

CSCE-574 Robotics 41

Goal

Start

Distance Traveled What are bounds on the path
length that the robot takes?

Lower and upper bounds?

Available Information:
D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound: D

Upper bound: D + 0.5 S Ni Pi

Ni = number of s-line intersections
with the i th obstacle

i

Bug 2 analysis

CSCE-574 Robotics 42

Goal

Start

head-to-head comparison
What are worlds in which Bug 2 does
better than Bug 1 (and vice versa) ?

Bug 2 beats Bug 1

or thorax-to-thorax, perhaps

Bug 1 beats Bug 2

CSCE-574 Robotics 43

head-to-head comparison
What are worlds in which Bug 2 does
better than Bug 1 (and vice versa) ?

Bug 2 beats Bug 1

or thorax-to-thorax, perhaps

Bug 1 beats Bug 2

CSCE-574 Robotics 44

“zipper world”

Bug Mapping

45CSCE-574 Robotics

Other bug-like algorithms
The Pledge maze-solving algorithm 1. Go to a wall

2. Keep the wall on your right

3. Continue until out of the maze

46CSCE-574 Robotics

Other bug-like algorithms
The Pledge maze-solving algorithm 1) Go to a wall

2) Keep the wall on your right

3) Continue until out of the maze

mazes of unusual origin

int a[1817];main(z,p,q,r){for(p=80;q+p-80;p=2*a[p])
for(z=9;z--;)q=3&(r=time(0)+r*57)/7,q=q?q-1?q-2?1-p%79?-
1:0:p%79-77?1:0:p<1659?79:0:p>158?-
79:0,q?!a[p+q*2]?a[p+=a[p+=q]=q]=q:0:0;for(;q++-
1817;)printf(q%79?"%c":"%c\n"," #"[!a[q-1]]);}

###
#
#
#
#
#
###
#
######### ##### # # # ########### ### ########### ### ##### ##### # # # ### # #
#
#
#
#
#
#####
#
#
#
#
#
#
#
###

IOCCC random maze generator

discretized RRT 47CSCE-574 Robotics

Tangent Bug
• Limited Range Sensor
• Tangent Bug relies on finding endpoints of

finite, continues segments of the obstacles

48CSCE-574 Robotics

Tangent Bug

49CSCE-574 Robotics

Contact Sensor Tangent Bug

1. Robot moves toward goal until it hits obstacle 1 at H1
2. Pretend there is an infinitely small sensor range and the direction which

minimizes the heuristic is to the right
3. Keep following obstacle until robot can go toward obstacle again
4. Same situation with second obstacle
5. At third obstacle, the robot turned left until it could not increase heuristic
6. D_followed is distance between M3 and goal, d_reach is distance between

robot and goal because sensing distance is zero
50CSCE-574 Robotics

Limited Sensor Range Tangent-Bug

51CSCE-574 Robotics

Infinite Sensor Range Tangent Bug

52CSCE-574 Robotics

Known Map

Brushfire Transform

CSCE-574 Robotics 53

The Wavefront Planner: Setup

CSCE-574 Robotics 54

The Wavefront in Action (Part 1)
• Starting with the goal, set all adjacent cells with “0” to the

current cell + 1
– 4-Point Connectivity or 8-Point Connectivity?
– Your Choice. We’ll use 8-Point Connectivity in our example

CSCE-574 Robotics 55

The Wavefront in Action (Part 2)
• Now repeat with the modified cells

– This will be repeated until no 0’s are adjacent to cells with values >= 2

• 0’s will only remain when regions are unreachable

CSCE-574 Robotics 56

The Wavefront in Action (Part 3)
• Repeat

CSCE-574 Robotics 57

The Wavefront in Action (Part 3)
• Repeat

CSCE-574 Robotics 58

The Wavefront in Action (Part 3)
• Until Done

– 0’s would only remain in the unreachable areas

CSCE-574 Robotics 59

The Wavefront in Action
• To find the shortest path, according to your metric, simply

always move toward a cell with a lower number
– The numbers generated by the Wavefront planner are roughly

proportional to their distance from the goal

Two possible shortest paths shownCSCE-574 Robotics 60

An alternative roadmap

CSCE-574 Robotics 61

Voronoi diagrams

These line segments make up
the Voronoi diagram for the
four points shown here.

Solves the “Post Office Problem”

CSCE-574 Robotics 62

Voronoi diagrams

These line segments make up
the Voronoi diagram for the
four points shown here.

Solves the “Post Office Problem”

or, perhaps, more important problems...

CSCE-574 Robotics 63

Voronoi diagrams

“true” Voronoi diagram

generalized Voronoi diagram
What is it?

(isolates a set of points)

CSCE-574 Robotics 64

Voronoi diagrams

Let B = the boundary of Cfree .

Let q be a point in Cfree . ()

Cfree

q

B

CSCE-574 Robotics 65

Voronoi diagrams

Let B = the boundary of Cfree .

Let q be a point in Cfree .

Cfree

q

Define clearance(q) = min { | q - p | }, for all p Î B

B

CSCE-574 Robotics 66

Voronoi diagrams

Let B = the boundary of Cfree .

Let q be a point in Cfree .

Cfree

q

Define clearance(q) = min { | q - p | }, for all p Î B

B

Define near(q) = { p Î B such that | q - p | = clearance(q) }

CSCE-574 Robotics 67

Voronoi diagrams

Let B = the boundary of Cfree .

Let q be a point in Cfree .

Cfree

q

Define clearance(q) = min { | q - p | }, for all p Î B

B

Define near(q) = { p Î B such that | q - p | = clearance(q) }

q is in the Voronoi diagram of Cfree if | near(q) | > 1 number of
set elements

+ maximizes distance from obstacles

+ reduces to graph search

+ can be used in higher-dimensions

- nonoptimal

- real diagrams tend to be noisy

Evaluation

CSCE-574 Robotics
68

Generalized Voronoi Graph (GVG)

Free SpaceCSCE-574 Robotics 69

Generalized Voronoi Graph (GVG)

Free Space with Topological Map (GVG)

CS
CE

-5
74

 R
ob

ot
ics

70

Generalized Voronoi Graph (GVG)

Free Space with Topological Map (GVG)

•Access GVG

71CSCE-574 Robotics

Generalized Voronoi Graph (GVG)

Free Space with Topological Map (GVG)

•Access GVG
•Follow Edge

CSCE-574 Robotics 72

Generalized Voronoi Graph (GVG)

Free Space with Topological Map (GVG)

•Access GVG
•Follow Edge

•Home to the MeetPoint

CSCE-574 Robotics 73

Generalized Voronoi Graph (GVG)

Free Space with Topological Map (GVG)

•Access GVG
•Follow Edge

•Home to the MeetPoint
•Select Edge

CSCE-574 Robotics 74

• Nomadic Scout

• Sonar (GVG navigation)

• Camera with omni-directional
mirror (feature detection)

• Onboard 1.2 GHz processor

GVG construction using sonar

CSCE-574 Robotics 75

GVG construction using sonar

CSCE-574 Robotics 76

GVG construction using sonar

CSCE-574 Robotics 77

Slammer in Action

CSCE-574 Robotics 78

Removing Edges

CSCE-574 Robotics 79

Meetpoint Detection

• 3σ uncertainty ellipse of explored meetpoints
• Meetpoint degree (branching factor)
• Distances to local obstacles
• Relative angle bearings
• Edge signature

– Edge length
– Edge Curvature

• Vertex signal
CSCE-574 Robotics 80

Ear-based Exploration

CSCE-574 Robotics 81

Uncertainty Reduction

CSCE-574 Robotics 82

Before Loop-closure After Loop-closure

Simulation

CSCE-574 Robotics 83
Code available online at https://github.com/QiwenZhang/gvg

Simulated Environment

CSCE-574 Robotics 84

Real Environment

CSCE-574 Robotics 85

Work Presented at IROS 2014

CSCE-574 Robotics 86

Voronoi applications

Skeletonizations resulting from
constant-speed curve evolution

A retraction of a 3d object
== “medial surface” what?

in 2d, it’s called
a medial axisCSCE-574 Robotics 87

skeleton shape

again reduces a 2d (or higher) problem to a question about graphs...

curve evolution centers of maximal diskswhere wavefronts collide

CSCE-574 Robotics 88

skeleton shape

again reduces a 2d (or higher) problem to a question about graphs...

curve evolution centers of maximal diskswhere wavefronts collide

graph matching
CSCE-574 Robotics 89

Problems

The skeleton is sensitive to small changes in the object’s boundary.

- graph isomorphism (and lots of other graph questions) : NP-completeCSCE-574 Robotics 90

Roadmap problems
If an obstacle decides to roll away... (or wasn’t there to begin with)

recomputing in less than O(N2) time?
CSCE-574 Robotics 91

