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Outline

• Path	Planning
– Visibility	Graph
– Potential	Fields
– Bug	Algorithms
– Skeletons/Voronoi Graphs
– C-Space
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Motion Planning
• The	ability	to	go	from	A to	B
– Known	map	– Off-line	planning
– Unknown	Environment	–Online	planning
– Static/Dynamic	Environment
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Path Planning

Robot Map

World
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Path Planning

Robot Map

World
•Indoor/Outdoor
•2D/2.5D/3D
•Static/Dynamic
•Known/Unknown
•Abstract (web)
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Path Planning

Robot Map

World

•Mobile
ØIndoor/Outdoor
ØWalking/Flying/Swimming

•Manipulator
•Humanoid
•Abstract
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Path Planning

Robot Map

World

•Topological
•Metric
•Feature Based
•1D,2D,2.5D,3D

7CSCE-574 Robotics



Path Planning

Robot Map

World

•Topological
•Metric
•Feature Based
•1D,2D,2.5D,3D

•Mobile
ØIndoor/Outdoor
ØWalking/Flying/Swimming

•Manipulator
•Humanoid
•Abstract

•Indoor/Outdoor
•2D/2.5D/3D
•Static/Dynamic
•Known/Unknown
•Abstract (web)
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Path Planning: Assumptions
• Known	Map
• Roadmaps	(Graph	representations)
• Polygonal	Representation

qgoal

qinit
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Visibility Graph
• Connect	Initial	and	goal	locations	with	all	the	visible	vertices

qgoal

qinit
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Visibility Graph
• Connect	initial	and	goal	locations	with	all	the	visible	vertices
• Connect	each	obstacle	vertex	to	every	visible	obstacle	vertex

qgoal

qinit
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Visibility Graph
• Connect	initial	and	goal	locations	with	all	the	visible	vertices
• Connect	each	obstacle	vertex	to	every	visible	obstacle	vertex
• Remove	edges	that	intersect	the	interior	of	an	obstacle

qgoal

qinit
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Visibility Graph
• Connect	initial	and	goal	locations	with	all	the	visible	vertices
• Connect	each	obstacle	vertex	to	every	visible	obstacle	vertex
• Remove	edges	that	intersect	the	interior	of	an	obstacle
• Plan	on	the	resulting	graph

qgoal

qinit
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Visibility Graph
• An	alternative	path
• Alternative	name:	“Rubber	band	algorithm”

qgoal

qinit
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Major Fault
• Point	robot	
• Path	planning	
like	that	
guarantees	to	hit	
the	obstacles
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Path Planning
Potential Field methods

• compute a repulsive force away from obstacles
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Local techniques 
Potential Field methods

• compute a repulsive force away from obstacles

• compute an attractive force toward the goal

CSCE-574 Robotics 17



Local techniques 
Potential Field methods

• compute a repulsive force away from obstacles

• compute an attractive force toward the goal

let the sum of the forces control the robot

key advantages?
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Local techniques 
Potential Field methods

• compute a repulsive force away from obstacles

• compute an attractive force toward the goal

let the sum of the forces control the robot

To a large extent, this is 
computable from sensor readings
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Sensor Based Calculations
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Major Problem?
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Local Minima!

Fobst

Fgoal
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Simulated Annealing 

• Every so often add some random force
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Limited-knowledge path planning

• known direction to goal

• otherwise local sensing

walls/obstacles encoders

•“reasonable” world
1. finitely many obstacles in any finite 

disc

2. a line will intersect an obstacle 
finitely many times 

Goal

Start

• Path planning with limited knowledge
– Insect-inspired “bug” algorithms
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Not truly modeling bugs...
Insects do use several cues for navigation:

neither are the current bug-
sized robots 

visual landmarks

polarized light

chemical sensing

Other animals use information from

magnetic fields

electric currents

temperature

they’re not ears...

migrating bobolinkbacteria
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Bug Strategy

“Bug 0” algorithm

• known direction to goal

• otherwise only local sensing
walls/obstacles   encoders

1) head toward goal

2) follow obstacles until you can 
head toward the goal again

3) continue

Insect-inspired “bug” algorithms

CSCE-574 Robotics 26

assume a left-
turn robot



Does It Work?
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“Bug 1” algorithm

• known direction to goal

• otherwise only local sensing
walls/obstacles   encoders

1) head toward goal

Insect-inspired “bug” algorithms

Bug 1
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“Bug 1” algorithm

• known direction to goal

• otherwise only local sensing
walls/obstacles   encoders

1) head toward goal

2) if an obstacle is encountered, 
circumnavigate it and remember 
how close you get to the goal

Insect-inspired “bug” algorithms

Bug 1
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“Bug 1” algorithm

• known direction to goal

• otherwise only local sensing
walls/obstacles   encoders

1) head toward goal

2) if an obstacle is encountered, 
circumnavigate it and remember 
how close you get to the goal

3) return to that closest point (by 
wall-following) and continue

Insect-inspired “bug” algorithms

Vladimir Lumelsky & Alexander Stepanov Algorithmica 1987

Bug 1
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Distance Traveled What are bounds on the path 
length that the robot takes?

Lower and upper bounds?

Available Information:
D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:

Upper bound:

Bug 1 analysis
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Distance Traveled What are bounds on the path 
length that the robot takes?

Lower and upper bounds?

Available Information:
D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound: D
Upper bound:

Bug 1 analysis
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Distance Traveled What are bounds on the path 
length that the robot takes?

Lower and upper bounds?

Available Information:
D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound: D

Upper bound: D + 1.5 S Pii

How good a bound?

How good an algorithm?

Bug 1 analysis
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“Bug 2” algorithmCall the line from the starting 
point to the goal the s-line

A better bug?
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“Bug 2” algorithmCall the line from the starting 
point to the goal the s-line

1) head toward goal on the s-line

A better bug?
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“Bug 2” algorithmCall the line from the starting 
point to the goal the s-line

1) head toward goal on the s-line

2) if an obstacle is in the way, 
follow it until encountering the s-
line again.

A better bug?
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“Bug 2” algorithm

1) head toward goal on the s-line

2) if an obstacle is in the way, 
follow it until encountering the s-
line again.

3) Leave the obstacle and continue 
toward the goal

OK ?

s-line

A better bug?
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“Bug 2” algorithm

1) head toward goal on the s-line

2) if an obstacle is in the way, 
follow it until encountering the s-
line again closer to the goal.

3) Leave the obstacle and continue 
toward the goal

OK ?

A better bug?
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Distance Traveled What are bounds on the path 
length that the robot takes?

Lower and upper bounds?

Available Information:
D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:

Upper bound:

Bug 2 analysis
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Distance Traveled What are bounds on the path 
length that the robot takes?

Lower and upper bounds?

Available Information:
D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:

Upper bound:

Ni = number of s-line intersections 
with the i th obstacle

Bug 2 analysis
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Distance Traveled What are bounds on the path 
length that the robot takes?

Lower and upper bounds?

Available Information:
D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound:        D 
Upper bound:

Ni = number of s-line intersections 
with the i th obstacle

Bug 2 analysis
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Distance Traveled What are bounds on the path 
length that the robot takes?

Lower and upper bounds?

Available Information:
D = straight-line distance from start to goal

Pi = perimeter of the i th obstacle

Lower bound: D

Upper bound: D + 0.5 S Ni Pi

Ni = number of s-line intersections 
with the i th obstacle

i

Bug 2 analysis
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head-to-head comparison
What are worlds in which Bug 2 does 
better than Bug 1 (and vice versa) ?

Bug 2 beats Bug 1

or thorax-to-thorax, perhaps

Bug 1 beats Bug 2
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head-to-head comparison
What are worlds in which Bug 2 does 
better than Bug 1 (and vice versa) ?

Bug 2 beats Bug 1

or thorax-to-thorax, perhaps

Bug 1 beats Bug 2
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“zipper world”



Bug Mapping
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Other bug-like algorithms
The Pledge maze-solving algorithm 1. Go to a wall

2. Keep the wall on your right 

3. Continue until out of the maze
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Other bug-like algorithms
The Pledge maze-solving algorithm 1) Go to a wall

2) Keep the wall on your right 

3) Continue until out of the maze

mazes of unusual origin

int a[1817];main(z,p,q,r){for(p=80;q+p-80;p=2*a[p])
for(z=9;z--;)q=3&(r=time(0)+r*57)/7,q=q?q-1?q-2?1-p%79?-
1:0:p%79-77?1:0:p<1659?79:0:p>158?-
79:0,q?!a[p+q*2]?a[p+=a[p+=q]=q]=q:0:0;for(;q++-
1817;)printf(q%79?"%c":"%c\n"," #"[!a[q-1]]);}

###############################################################################
#         # ###       # # #       # #   # #   # #       #   #     #         # #
# # ####### ##### ##### # ####### # # ### ### # ##### ##### # ### ##### # ### #
# #       # # # # # #       #     #         # # #   #     #     #   #   # #   #
# ##### # # # # # # ##### ##### # ### ### # # # ### ### ### ##### # ### ##### #
# #     #       #       #       # # # #   #   #           #     # # #         #
# # ### ##### ### ##### ##### ### # ### # # # # ### ##### ### ##### # ##### ###
#     # #     # # # # #         # #     # # #   # # # #     # #       #     # #
######### ##### # # # ########### ### ########### ### ##### ##### # # # ### # #
#     #     #     #     # #     # # # #     #   #       # # # # # # # # #     #
### ### ##### ####### ### # # ### # # # # ##### # # ##### # # # ### # # ##### #
#     #   #   #     #       #   # #   # #   ### # #       #     # # # #   #   #
### # ### # ##### ### # ##### # # # ##### ##### ### ### ####### # ##### # ### #
# # # #     #     #   # # #   # #   # #     # #   # #   #       #     # #   # #
# # # ########### ### ### ### ####### # # ### # ####### ### ##### ### ### #####
# # #   #           # #       #     #   #       # #       #     # #       #   #
# # # ### ##### ##### # ####### # ### ####### ### # ### ####### ### ##### ### #
# # # #     #   # #   #     #   # #         #     # # #       # #   #   # #   #
# # # ### ### ### # # # # ### # # # ### # ####### # # ####### # # # # # # ### #
#   #       #       # # #     # #   # # #       #         #     # # # #       #
# # # # # ### ##### ####### # ##### # ##### ### ### # # # ### ##### ### # ### #
# # # # # #     #       ### #     #     #   #     # # # # #           # # #   #
###############################################################################

IOCCC random maze generator

discretized RRT 47CSCE-574 Robotics



Tangent Bug
• Limited Range Sensor
• Tangent Bug relies on finding endpoints of 

finite, continues segments of the obstacles
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Tangent Bug
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Contact Sensor Tangent Bug

1. Robot moves toward goal until it hits obstacle 1 at H1
2. Pretend there is an infinitely small sensor range and the direction which 

minimizes the heuristic is to the right
3. Keep following obstacle until robot can go toward obstacle again
4. Same situation with second obstacle
5. At third obstacle, the robot turned left until it could not increase heuristic
6. D_followed is distance between M3 and goal, d_reach is distance between 

robot and goal because sensing distance is zero
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Limited Sensor Range Tangent-Bug
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Infinite Sensor Range Tangent Bug
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Known Map 

Brushfire Transform
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The Wavefront Planner: Setup
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The Wavefront in Action (Part 1)
• Starting with the goal, set all adjacent cells with “0” to the 

current cell + 1
– 4-Point Connectivity or 8-Point Connectivity?
– Your Choice. We’ll use 8-Point Connectivity in our example
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The Wavefront in Action (Part 2)
• Now repeat with the modified cells

– This will be repeated until no 0’s are adjacent to cells with values >= 2

• 0’s will only remain when regions are unreachable
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The Wavefront in Action (Part 3)
• Repeat
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The Wavefront in Action (Part 3)
• Repeat
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The Wavefront in Action (Part 3)
• Until Done

– 0’s would only remain in the unreachable areas
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The Wavefront in Action
• To find the shortest path, according to your metric, simply 

always move toward a cell with a lower number
– The numbers generated by the Wavefront planner are roughly 

proportional to their distance from the goal

Two possible shortest paths shownCSCE-574 Robotics 60



An alternative roadmap

CSCE-574 Robotics 61



Voronoi diagrams

These line segments make up 
the Voronoi diagram for the 
four points shown here.

Solves the “Post Office Problem”
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Voronoi diagrams

These line segments make up 
the Voronoi diagram for the 
four points shown here.

Solves the “Post Office Problem”

or, perhaps, more important problems...
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Voronoi diagrams

“true” Voronoi diagram

generalized Voronoi diagram
What is it?

(isolates a set of points)
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Voronoi diagrams

Let B = the boundary of Cfree .

Let q be a point in Cfree . (    )

Cfree

q

B
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Voronoi diagrams

Let B = the boundary of Cfree .

Let q be a point in Cfree .

Cfree

q

Define clearance(q) =  min  { | q - p | }, for all p Î B 

B
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Voronoi diagrams

Let B = the boundary of Cfree .

Let q be a point in Cfree .

Cfree

q

Define clearance(q) =  min  { | q - p | }, for all p Î B 

B

Define near(q) =  {  p Î B  such that  | q - p | = clearance(q) }
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Voronoi diagrams

Let B = the boundary of Cfree .

Let q be a point in Cfree .

Cfree

q

Define clearance(q) =  min  { | q - p | }, for all p Î B 

B

Define near(q) =  {  p Î B  such that  | q - p | = clearance(q) }

q is in the Voronoi diagram of Cfree if   | near(q) | > 1 number of 
set elements

+ maximizes distance from obstacles

+ reduces to graph search

+ can be used in higher-dimensions

- nonoptimal

- real diagrams tend to be noisy

Evaluation

CSCE-574 Robotics
68



Generalized Voronoi Graph (GVG)

Free SpaceCSCE-574 Robotics 69



Generalized Voronoi Graph (GVG)

Free Space with Topological Map (GVG)

CS
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Generalized Voronoi Graph (GVG)

Free Space with Topological Map (GVG)

•Access GVG
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Generalized Voronoi Graph (GVG)

Free Space with Topological Map (GVG)

•Access GVG
•Follow Edge
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Generalized Voronoi Graph (GVG)

Free Space with Topological Map (GVG)

•Access GVG
•Follow Edge

•Home to the MeetPoint

CSCE-574 Robotics 73



Generalized Voronoi Graph (GVG)

Free Space with Topological Map (GVG)

•Access GVG
•Follow Edge

•Home to the MeetPoint
•Select Edge
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• Nomadic Scout

• Sonar (GVG navigation)

• Camera with omni-directional 
mirror (feature detection)

• Onboard 1.2 GHz processor

GVG construction using sonar

CSCE-574 Robotics 75



GVG construction using sonar
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GVG construction using sonar
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Slammer in Action
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Removing Edges
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Meetpoint Detection

• 3σ uncertainty ellipse of explored meetpoints
• Meetpoint degree (branching factor)
• Distances to local obstacles
• Relative angle bearings
• Edge signature

– Edge length
– Edge Curvature

• Vertex signal
CSCE-574 Robotics 80



Ear-based Exploration
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Uncertainty Reduction
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Before Loop-closure After Loop-closure



Simulation

CSCE-574 Robotics 83
Code available online at https://github.com/QiwenZhang/gvg



Simulated Environment

CSCE-574 Robotics 84



Real Environment
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Work Presented at IROS 2014
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Voronoi applications

Skeletonizations resulting from 
constant-speed curve evolution

A retraction of a 3d object    
== “medial surface” what?

in 2d, it’s called 
a medial axisCSCE-574 Robotics 87



skeleton      shape

again reduces a 2d (or higher) problem to a question about graphs...

curve evolution centers of maximal diskswhere wavefronts collide
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skeleton      shape

again reduces a 2d (or higher) problem to a question about graphs...

curve evolution centers of maximal diskswhere wavefronts collide

graph matching
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Problems

The skeleton is sensitive to small changes in the object’s boundary.

- graph isomorphism (and lots of other graph questions) : NP-completeCSCE-574 Robotics 90



Roadmap problems
If an obstacle decides to roll away... (or wasn’t there to begin with)

recomputing in less than O(N2) time?
CSCE-574 Robotics 91


