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Why	vision?	

•  Passive	(emits	nothing).	
– Discreet.	
– Energy	efficient.	

•  Intuitive.	
•  Powerful	(works	well	for	us,	right?)	
•  Long	and	short	range.	
•  Fast.	
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So,	what’s	the	problem?	

•  How	hard	is	vision?	Why	do	we	think	is	do-able?	

Problems:	
•  Slow.	
•  Data-heavy.	
•  Impossible.	
•  Mixes	up	many	factors.	
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Data	heavy	
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B From GoPro HERO3+ at Barbados 2015 Field Trials 



Aliasing	

•  Images	are	not	actually	continuous.	
•  The	sampling	(and	hardware)	issues	lead	to	a	
few	other	minor	problems.	
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Aliasing	
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Aliasing	

•  To	avoid:	fsampling	>	2Fmax	
– Nyquist	Rate	
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Aliasing:	Moiré	Patterns	
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•  What	a	camera	does	to	the	3d	world...	
Shigeo Fukuda

squeezes	away	one	dimension	

Ill-posed	
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•  What	a	camera	does	to	the	3d	world...	
Shigeo Fukuda

Ill-posed	
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Ill-posed	

•  	In	trying	to	extract	3d	structure	from	2d	images,	
vision	is	an	ill-posed	problem.	
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Ill-posed	

•  	In	trying	to	extract	3d	structure	from	2d	images,	
vision	is	an	ill-posed	problem.	

– An	image	isn’t	enough	to	disambiguate	the	many	
possible	3d	worlds	that	could	have	produced	it.	
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Difficult	scenarios	
•  In	certain	settings,	such	as	the	underwater,	robotic	vision	is	
particularly	challenging	
– Different	lighting	conditions	
– Color	loss	
– Hazing	and	blur	
– Texture	loss	
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	doesn’t		need	a	full	interpretation	of	available	images	

 does		need	information	about	what	to	do...	

• avoiding	obstacles	(or	predators)	

• pursuing	objects	

• localizing	itself	

• Mapping	

• finding	targets	

• reasoning	about	the	world	…	

“This	is	Prof.	X	in	his	office	offering	me	a	cup	of	iced	tea.”	

“Run	Away!!”	

reactive

deliberative

environmental	
interactions	

What	does	a	robot	need	?	
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Key	problems	
•  Recognition:	

– What	is	that	thing	in	the	picture?	
– What	are	all	the	things	in	the	image?	

•  Scene	interpretation	
–  Describe	the	image?	

•  Scene	“reconstruction”:	
– What	is	the	3-dimensional	layout	of	the	scene?	
– What	are	the	physical	parameters	that	gave	rise	to	the	
image?	

– What	is	a	description	of	the	scene?	

Notion	of	an	“inverse	problem.”	
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 (1)		Image	streams	
simplified	via	generality	

simplified	via	specificity	

	(2)		Stereo	vision	 		(or	beyond...)	

 (3)		Incorporating	vision	within	robot	control	

Visual	“servoing”		3d	reconstruction	

A	brief	overview	of	robotic	vision	processing...	

Robot	vision	sampler	
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3d	reconstruction	
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Visual	Servoing	
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Computer	vision	algorithms	

•  Image	processing	
•  Geometric	computer	vision	
•  Semantic	computer	vision	

•  It	is	fundamental	first	to	understand	image	
formation	
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center of projection 

focal length 

object 

image plane 

Camera	Geometry	

3Dà2D	transformation:	perspective	projection	
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canonical	axes	

f 

pixel	coordinates	

optical	axis	

Add	coordinate	systems	in	order	to	
describe	feature	points...		

z 

x 

y 

u 
v 

object	coordinates	

v	
(row)	

u	(col)	

principal	
point	

Z 

x 

y 

at	the	C.O.P.	

Coordinate	Systems	
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f 

pixel	coordinates	

z 

x 

y 

u 
v 

object	coordinates	

(X,Y,Z)			in	canonical	coords	image	can.	coords:	(x,y)	

canonical	axes	

Coordinate	Systems	
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x	=				
f	X				
 Z			 y	=				

f	Y				
 Z			

a	nonlinear	transformation	

f 

pixel	coordinates	

z 

x 

y 

u 
v 

object	coordinates	

(X,Y,Z)			in	canonical	coords	image	can.	coords:	(x,y)	

canonical	axes	

goal:	to	recover	information	about	(X,Y,Z)	from	
(x,y)	

From	3d	to	2d	
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Camera	Calibration	

•  Camera	Model	
–  [u	v	1]	Pixel	coords	
–  																										World	coords	

•  Intrinsic	Parameters	
–  																																focal	lengths	in	pixels	
–  					skew	coefficient	
–  									focal	point	

•  Extrinsic	Parameters	
–  											Rotation	and	Translation	
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Camera	Calibration	
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Existing	packages	in	MATLAB,	OpenCV,	etc	



Rectified	Image	Sample	
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Unrectified	 Rectified	

From Clearpath Husky Axis M1013 camera 



Rectified	Image	Sample	
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Unrectified	 Rectified	

From Parrot ARDrone 2.0 front camera 



Rectified	Image	Sample	
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Unrectified	 Rectified	

From GoPro HERO3+ at Barbados 2015 Field Trials 



ReRectified	Image	Sample	
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Rectified	 ReRectified	

From Aqua front camera at Barbados 2013 Field Trials 



Gaussian	Blur	
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Gaussian	Blur	and	Noise	
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Gaussian	Blur,	Noise,	Sobel	
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Image	Downsampling	
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Thresholded	image	
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Edge	detection	
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Correspondence	Problem	
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From Raspberry PI camera at Barbados 2016 Field Trials 



Correspondence	
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From I1 From I2 

? 



Fiduciary	Markers/Fiducial	

Fourier Tag 
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Good	Feature	
•  Invariant	to	transformations	
•  Unique	
•  Efficient	to	compute	
•  Good	precision	and	high	recall	
•  Several	Alternatives:	

– Harris	Corners	(OpenCV)		
–  SURF	(OpenCV)	
–  SIFT	
– ORB	
–  etc	
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Harris	Corners	
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Harris	Corners	
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Harris	Corners	
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SIFT	
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SIFT	
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SURF	
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SURF	
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ORB	
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ORB	
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Outliers	
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Outliers Inliers 



Mosaic	
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3D	Sparse	reconstruction	
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3D	Sparse	reconstruction	
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Internet	Photos	
(“Colosseum”)	

Reconstructed	3D	cameras	and	
points	

Source: https://grail.cs.washington.edu/rome/ 



Feature	quality	
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Feature	quality	
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Feature	quality	
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Feature	quality	

57 CSCE 574: Robotics 



Egomotion	
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Visual	Odometry/Structure	from	Motion	
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Image	
stream	

Feature	
detection	

Feature	
matching	
(tracking)	

Motion	
estimation	 Optimization	



Optical	Flow	

•  Definition:	
–  the	pattern	of	apparent	motion	of	objects,	surfaces,	
and	edges	in	a	visual	scene	caused	by	the	relative	
motion	between	an	observer	(an	eye	or	a	camera)	and	
the	scene.	
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Optical	Flow	Field	
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Information	about	image	motion	rather	than	the	scene.				
This	is	a	classic	reconstruction	problem.			

This	next	step	might	be	to	use	the	image	motion	to	infer	scene	
motion,	robot	motion	or	3D	layout.	

time	sequence	of	images	

Optical	flow	
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Information	about	scene	motion	rather	than	the	scene.	

an	“image	cube”	

I(x,y,t)	

Optical	flow	
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Information	about	scene	motion	rather	than	the	scene.	

optical	flow	 How	?	

Optical	flow	
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99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

 90 90 70 40 25

 90 70 40 40 25

 90 70 40 40 25

 90 70 40 40 20

 70 50 40 30 15

I(x,y,t)

Optical	Flow	
•  By	measuring	the	direction	that	intensities	are	moving...	

•  We	can	estimate	things...	
CSCE 574: Robotics 65 



99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

 90 90 70 40 25

 90 70 40 40 25

 90 70 40 40 25

 90 70 40 40 20

 70 50 40 30 15

By	measuring	the	direction	that	intensities	are	moving...	

I(2,-1,0)

I(0,0,1)

I(0,0,0
) 

I(x,y,t)
I(x,y,0)

I(x,y,1)

We	can	estimate	things	...	 =	Ix		dx	
dI	 at	(0,0,0)	

Optical	Flow	
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99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

 90 90 70 40 25

 90 70 40 40 25

 90 70 40 40 25

 90 70 40 40 20

 70 50 40 30 15

By	measuring	the	direction	that	intensities	are	moving...	

I(2,-1,0)

I(0,0,1)

I(0,0,0
) 

I(x,y,t)
I(x,y,0)

I(x,y,1)

We	can	estimate	things	like	 =	Ix		 = = I(1,0,0)	-	I(0,0,0)		ΔI	
Δx	dx	

dI	 at	(0,0,0)	
1	-	0	

=	-30	

Optical	Flow	
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99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

 90 90 70 40 25

 90 70 40 40 25

 90 70 40 40 25

 90 70 40 40 20

 70 50 40 30 15

By	measuring	the	direction	that	intensities	are	moving...	

I(2,-1,0)

I(0,0,1)

I(0,0,0
) 

I(x,y,t)
I(x,y,0)

I(x,y,1)

We	can	estimate	things	like	
=	Ix		dx	

dI	 =	Iy		dy	
dI	 =	It		dt	

dI	 so...	

Optical	Flow	



Let		I(x,y,t)	be	the	sequence	of	images.	
Simplest	assumption	(constant	brightness	constraint):	

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)	

(x,y,t
) 

99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

Measuring	Optical	Flow	
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Let		I(x,y,t)	be	the	sequence	of	images.	
Simplest	assumption	(constant	brightness	constraint):	

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)	

Reminder:						f(x	+	dx)	=	f(x)	+	f’(x)	dx	+	f’’(x)	dx2	/2		+		...		

(x,y,t
) 

99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

Measuring	Optical	Flow	
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Let		I(x,y,t)	be	the	sequence	of	images.	
Simplest	assumption	(constant	brightness	constraint):	

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)	

I(x,y,t)		=		I(x,y,t)	+		Ix	dx	+	Iy	dy	+	It	dt	+	2nd	deriv.	+	higher	

Reminder:						f(x	+	dx)	=	f(x)	+	f’(x)	dx	+	f’’(x)	dx2	/2		+		...		

(x,y,t
) 

99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

Measuring	Optical	Flow	
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Let		I(x,y,t)	be	the	sequence	of	images.	
Simplest	assumption	(constant	brightness	constraint):	

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)	

I(x,y,t)		=		I(x,y,t)	+		Ix	dx	+	Iy	dy	+	It	dt	+	2nd	deriv.	+	higher	

0		=		Ix	dx	+	Iy	dy	+	It	dt	

Reminder:						f(x	+	dx)	=	f(x)	+	f’(x)	dx	+	f’’(x)	dx2	/2		+		...		

ignore	these	terms	

(x,y,t
) 

99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

Measuring	Optical	Flow	
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Let		I(x,y,t)	be	the	sequence	of	images.	
Simplest	assumption	(constant	brightness	constraint):	

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)	

I(x,y,t)		=		I(x,y,t)	+		Ix	dx	+	Iy	dy	+	It	dt	+	2nd	deriv.	+	higher	

0		=		Ix	dx	+	Iy	dy	+	It	dt	

Reminder:						f(x	+	dx)	=	f(x)	+	f’(x)	dx	+	f’’(x)	dx2	/2		+		...		

ignore	these	terms	

-It		=		Ix								+	Iy				dt
dx

dt	
dy	 intensity-flow	equation	

(x,y,t
) 

99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

good	and	bad...	

Measuring	Optical	Flow	
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-It		=		Ix								+	Iy				dt	
dx	

dt	
dy	

•  The	intensity-flow	equation	provides	only	one	constraint	
	on	two	variables	(	x-motion	and	y-motion)	

It	is	only	possible	to	find	optical	flow	in	one	
direction...	

The	“aperture”	problem	
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It	is	only	possible	to	find	optical	flow	in	one	direction...	
at	any	single	point	in	the	image	!	

Smoothing	can	be	done	by	incorporating	neighboring	points’	information.	

img1	 img2	

raw	
optical	
flow	

smoothed	
for	ten	
iterations	

The	“aperture”	problem	
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Observations	&	Warnings	

•  Assume	the	scene	itself	is	static.	
•  Find	matching	chunks	in	the	images.	
•  An	instance	of	correspondence.	
BUT	
•  World	really	isn’t	static.	
•  Lightning	might	change	even	in	a	static	scene.	

76 CSCE 574: Robotics 



Features	vs	Optical	Flow	

•  Feature-based	methods	
–  Detect	features	(corners,	textured	areas),	extract	descriptors,	and	
track	them	

–  Sparse	motion	fields,	but	possibly	robust	tracking	
–  Suitable	especially	when	image	motion	is	large	(10s	of	pixels)	

•  Direct	methods	(optical	flow)	
–  Directly	recover	image	motion	from	spatio-temporal	image	
brightness	variations	

–  Global	motion	parameters	directly	recovered	without	an	
intermediate	feature	motion	calculation	

–  Dense	motion	fields,	but	more	sensitive	to	appearance	variations	
–  Suitable	for	video	and	when	image	motion	is	small	(<	10	pixels)	
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Camera	and	IMU	
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From drifter with Raspberry PI Camera and Pololu MinIMU-9 v3 at Barbados 2016 Field Trials 



•  If	interpreting	a	single	image	is	difficult...	What	about	more	?!	

multiple	cameras	

multiple	times	

A	Vision	“solution”	
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Stereo	Vision:	Pinhole	Camera	

p

focal points

image plane 
f1

image plane 
f2

O2

O1
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Stereo	Vision:	Pinhole	Camera	

p

focal points

image plane 
f1

p’1

image plane 
f2

O2

O1 p’2
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Stereo	Vision:	Pinhole	Camera	

p

focal points

image plane 
f1

p’1

image plane 
f2

(part of) 
epipolar plane

epipolar line

O2

O1 p’2
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Stereo	Vision:	Pinhole	

x2
x1

px1

disparity: d=px1-px2

px2

baseline b
D

Depth: D=fb/d

f
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Stereo	Vision:	Pinhole	

p

x2
x1

px1

px2

D

f

a1

a2

q2

q1

q2

q1
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Baseline		

• What’s	the	optimal	baseline?	
–  Too	small:		large	depth	error	
–  Too	large:		difficult	search	problem	
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Image plane 

Small Baseline Large Baseline 

Pixel size 

O1 O2 O1 O2 

p 



Baseline	
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GoPro 3D HERO System source: http://www.cvlibs.net/datasets/kitti 

b=3.2 cm b=54 cm 



Matching	Left	and	Right	
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3D	reconstruction	
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Stereo:	Disparity	Map	

89 CSCE 574: Robotics 



Depth	Map	in	a	City	
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Another	Example	(Hole	Filling)	

Cloth	Parameters	and	Motion	Capture	by	David	Pritchard	
B.A.Sc.,	University	of	Waterloo,	2001	
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Stereo	Vision	

•  Large	number	of	algorithms	out	there:	
http://vision.middlebury.edu/stereo/	

	rank	43	different	algorithms.	
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Object	recognition	
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Pedestrian and car detection 

Lane detection 

Coral classification 

source: http://www.cs.cornell.edu/courses/cs4670/2013fa/ 

From GoPro 3D Hero at Barbados 2015 Field Trial 



Bag	of	words	
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Object	 Bag	of	‘words’	

source: http://wikimedia.org 



Appearance-based	place	recognition	
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source: http://www.robots.ox.ac.uk/~mjc 



Deep	learning	based	classification	
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Computer	Vision	Books	

•  Richard	Szeliski,	“Computer	Vision:	Algorithms	
and	Applications”,	Springer,	2010	

•  Richard	Hartley	and	Andrew	Zisserman,	
“Multiple	View	Geometry	in	Computer	Vision”,	
Cambridge	University	Press,	2004	

•  David	Forsyth	and	Jean	Ponce,	“Computer	
Vision:	A	Modern	Approach”,	Pearson,	2011	
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Nice	Classes	

•  Noah	Snavely	–	Introduction	to	Computer	Vision	
http://www.cs.cornell.edu/courses/
cs4670/2013fa/lectures/lectures.html	

•  Steve	Seitz	and	Rick	Szeliski	–	Computer	Vision	
http://courses.cs.washington.edu/courses/
cse576/08sp/	
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