CSCE 574 ROBOTICS

Configuration Space

Configuration Space

Free Space

Obstacles

Configuration Space

Free Space

Obstacles

Robot
(treat as point object)

Definition

- A robot configuration is a specification of the positions of all robot points relative to a fixed coordinate system

E Usually a configuration is expressed as a "vector" of position/orientation parameters

What is a Path?

What is a Path?

CSCE-574 Robotics

Tool: Configuration Space (C-Space C)

Tool: Configuration Space (C-Space C)

Tool: Configuration Space (C-Space C)

Articulated Robot Example

$$
q=\left(q_{1}, q_{2}, \ldots, q_{10}\right)
$$

Configuration Space of a Robot

E Space of all its possible configurations

- But the topology of this space is usually not that of a Cartesian space

Configuration Space of a Robot

E Space of all its possible configurations

- But the topology of this space is usually not that of a Cartesian space

CSCE-574 Robotics

Configuration Space of a Robot

E Space of all its possible configurations

- But the topology of this space is usually not that of a Cartesian space

CSCE-574 Robotics

Parameterization of SO(3)

- Euler angles: $(\phi, \theta, \psi)_{z}$

- Unit quaternion: ${ }^{x}$
$\left(\cos \theta / 2, n_{1} \sin \theta / 2, n_{\text {cSCE. } 544 \text { Robatics }}^{\prime}, \sin \theta / 2, n_{3} \sin \theta / 2\right)$

A welding robot

A Stuart Platform

Barrett WAM arm on a mobile platform

CSCE-574 Robotics

Configuration Space Obstacle

Reference configuration
How do we get from A to B ?

An obstacle in the robot's workspace

The C-space representation of this obstacle...

Two link path

Thanks to Ken Goldberg

2D Rigid Object

The Configuration Space

TOP
VIEW

workspace
CSCE-574 Robotics

Moving a piano

Parameterization of Torus

(a)

Linear-Time Computation of C-Obstacle in 2-D

$b_{1}-a_{2}\left(0,0, \theta_{0}\right)$

Rigid Robot Translating and Rotating in 2-D

CSCE-574 Robotics

Free and Semi-Free Paths

- A free path lies entirely in the free space F
- A semi-free path lies entirely in the semi-free space

CSCE-574 Robotics

CSCE-574 Robotics

Notion of Homotopic Paths

- Two paths with the same endpoints are homotopic if one can be continuously deformed into the other
- $\mathrm{R} \times \mathrm{S}^{1}$ example:

- τ_{1} and τ_{2} are homotopic
- τ_{1} and τ_{3} are not homotopic
- In this example, infinity of homotopy classes

Connectedness of C-Space

- C is connected if every two configurations can be connected by a path
- C is simply-connected if any two paths connecting the same endpoints are homotopic Examples: \mathbf{R}^{2} or \mathbf{R}^{3}
- Otherwise C is multiply-connected Examples: S^{1} and $S O$ (3) are multiply- connected:
- In S 1, infinity of homotopy classes
- In SO(3), only two homotopy classes

Classes of Homotopic Free Paths

Probabilistic Roadmaps PRMs

The basic idea behind PRM is to take random samples from the configuration space of the robot, testing them for whether they are in the free space, and use a local planner to attempt to connect these configurations to other nearby configurations. The starting and goal configurations are added in, and a graph search algorithm is applied to the resulting graph to determine a path between the starting and goal configurations.

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; Overmars, M. H. (1996), "Probabilistic roadmaps for path planning in high-dimensional configuration spaces", IEEE Transactions on Robotics and Automation 12 (4): 566-580.

Rapidly-exploring Random Trees

- A point P in C is randomly chosen.
- The nearest vertex in the RRT is selected.
- A new edge is added from this vertex in the direction of P , at distance ε.
- The further the algorithm goes, the more space is covered.

Rapidly-expanding Random Trees

Starting vertex

Rapidly-expanding Random Trees

Vertex randomly drawn

Rapidly-expanding Random Trees

Nearest vertex

Rapidly-expanding Random Trees

Rapidly-expanding Random Trees

Vertex randomly drawn

Rapidly-expanding Random Trees

Nearest point

Rapidly-expanding Random Trees

The vertex is in Cfree
New vertex

Rapidly-expanding Random Trees

Rapidly-expanding Random Trees

Rapidly-expanding Random Trees

Rapidly-expanding Random Trees

New vertex

Rapidly-expanding Random Trees

And it continues...

RRT-Connect

- We grow two trees, one from the beginning vertex and another from the end vertex
- Each time we create a new vertex, we try to greedily connect the two trees

RRT-Connect: example

- Start

O Goal

RRT-Connect: example

-

Random vertex

RRT-Connect: example

RRT-Connect: example

We greedily connect the bottom tree to our new vertex

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

Obstacle found!

RRT-Connect: example

Now we swap roles !

RRT-Connect: example

Now we swap roles !

RRT-Connect: example

We grow the bottom tree

RRT-Connect: example

Now we greedily try to connect

And we continue...

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

RRT-Connect: example

Connection made!

RRT-Connect: example

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

An RRT in 2D

(

Example from: http://msl.cs.uliuc.edu/rrt/gallery_2drrt.html

A Puzzle solved using RRTs

The goal is the separate the two bars from each other. You might have seen a puzzle like this before. The example was constructed by Boris Yamrom, GE Corporate Research \& Development Center, and posted as a research benchmark by Nancy Amato at Texas A\&M University. It has been cited in many places as a one of the most challenging motion planning examples. In 2001, it was solved by using a balanced bidirectional RRT, developed by James Kuffner and Steve LaValle. There are no special heuristics or parameters that were tuned specifically for this problem.

Alpha Puzzle 1.0 Solution
James Kuffner, Feb. 2001

model by DSMFT group, Texas A\&M Univ. original model by Boris Yamrom, GE On a current PC (circa 2003), it consistently takes a few minutes to solve.

Lunar Landing

The following is an open loop trajectory that was planned in a 12-dimensional state space. The video shows an X-Wing fighter that must fly through structures on a lunar base before entering the hangar. This result was presented by Steve LaValle and James Kuffner at the Workshop on the Algorithmic Foundations of Robotics, 2000.

