

UNIVERSITY OF SOUTH CAROLINA

CSCE 574 ROBOTICS

Configuration Space

Ioannis Rekleitis

Configuration Space

Configuration Space

Definition

A robot configuration is a specification of the positions of all robot points relative to a fixed coordinate system

Usually a configuration is expressed as a "vector" of position/orientation parameters

What is a Path?

• q_{init}

•

q_{goal}

What is a Path?

Tool: Configuration Space (C-Space C)

Tool: Configuration Space (C-Space C)

CSCE-574 Robotics

Tool: Configuration Space (C-Space C)

Configuration Space of a Robot

Space of all its possible configurations
But the topology of this space is usually not that of a Cartesian space

Configuration Space of a Robot

Space of all its possible configurations
But the topology of this space is usually not that of a Cartesian space

Configuration Space of a Robot

Space of all its possible configurations
But the topology of this space is usually not that of a Cartesian space

Parameterization of SO(3) • Euler angles: (ϕ, θ, ψ) $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ V Х Unit quaternion: $(\cos \theta/2, n_1 \sin \theta/2, n_2 \sin \theta/2, n_3 \sin \theta/2)$

A welding robot

CSCE-574 Robotics

A Stuart Platform

Barrett WAM arm on a mobile platform

Configuration Space Obstacle

Reference *configuration*

How do we get from A to B ?

An obstacle in the robot's workspace

CSCE-574 Robotics

The C-space representation of this obstacle...

Two link path

Thanks to Ken Goldberg

2D Rigid Object

The Configuration Space

Moving a piano

Parameterization of Torus

Linear-Time Computation of C-Obstacle in 2-D

(convex polygons)

Rigid Robot Translating and Rotating in 2-D

Free and Semi-Free Paths

- A free path lies entirely in the free space F
- A semi-free path lies entirely in the semi-free space

 \bigcirc

Notion of Homotopic Paths

Two paths with the same endpoints are homotopic if one can be continuously deformed into the other

R x S¹ example:

τ₁ and τ₂ are homotopic
τ₁ and τ₃ are not homotopic
In this example, infinity of homotopy classes

Connectedness of C-Space

- C is connected if every two configurations can be connected by a path
- C is simply-connected if any two paths connecting the same endpoints are homotopic Examples: R² or R³
- Otherwise C is multiply-connected Examples: S¹ and SO(3) are multiply- connected:
 - In S¹, infinity of homotopy classes
 - In SO(3), only two homotopy classes

Classes of Homotopic Free Paths

Probabilistic Roadmaps PRMs

The basic idea behind PRM is to take random samples from the configuration space of the robot, testing them for whether they are in the free space, and use a local planner to attempt to connect these configurations to other nearby configurations. The starting and goal configurations are added in, and a graph search algorithm is applied to the resulting graph to determine a path between the starting and goal configurations.

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; Overmars, M. H. (1996), "Probabilistic roadmaps for path planning in high-dimensional configuration spaces", IEEE Transactions on Robotics and Automation 12 (4): 566–580.

Rapidly-exploring Random Trees

- A point P in C is randomly chosen.
- The nearest vertex in the RRT is selected.
- A new edge is added from this vertex in the direction of P, at distance ε.
- The further the algorithm goes, the more space is covered.

Rapidly-expanding Random Trees

• Starting vertex

Rapidly-expanding Random Trees

Vertex randomly drawn

Rapidly-expanding Random Trees

 \bigcirc

Nearest vertex

Vertex randomly drawn

The vertex is in Cfree ε New vertex

And it continues...

RRT-Connect

• We grow two trees, one from the beginning vertex and another from the end vertex

• Each time we create a new vertex, we try to greedily connect the two trees

Random vertex

CSCE-574 Robotics

 \bigcirc

Obstacle found !

Now we swap roles !

We grow the bottom tree

Now we greedily try to connect

And we continue...

 \bigcirc

An RRT in 2D

Example from: http://msl.cs.uiuc.edu/rrt/gallery_2drrt.html

A Puzzle solved using RRTs

The goal is the separate the two bars from each other. You might have seen a puzzle like this before. The example was constructed by Boris Yamrom, GE Corporate Research & Development Center, and posted as a research benchmark by Nancy Amato at Texas A&M University. It has been cited in many places as a one of the most challenging motion planning examples. In 2001, it was solved by using a balanced bidirectional RRT, developed by James Kuffner and Steve LaValle. There are no special heuristics or parameters that were tuned specifically for this problem. On a current PC (circa 2003), it consistently takes a few minutes to solve.

Alpha Puzzle 1.0 Solution James Kuffner, Feb. 2001

model by DSMFT group, Texas A&M Univ. original model by Boris Yamrom, GE

Lunar Landing

The following is an open loop trajectory that was planned in a 12-dimensional state space. The video shows an X-Wing fighter that must fly through structures on a lunar base before entering the hangar. This result was presented by Steve LaValle and James Kuffner at the Workshop on the Algorithmic Foundations of Robotics, 2000.

