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Research Process

• Identify problem of interest
– Why is it important to solve it
– What has been done in the literature

• Study, design, and develop the algorithm for robotic 
applications
– Approximability, approximation
– Space and computational complexity
– Heuristics

• Deploy algorithm 
– Simulation
– Fielded robots

• Evaluate performance of algorithm on experiments
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Software for a robot

• Robots are complex systems that involve a large number of 
individual capabilities

• Robot architecture is the set of principles, building blocks, 
and tools for designing robots
– Architectural structure: system into subsystems with interaction
– Architectural style: how communication happens

• Currently in a robot there might be multiple robot 
architectures

• However, a well-conceived architecture can have significant 
advantages for specification, execution, and validation
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Robot Architectures Decomposition

• Modular decomposition reduces complexity bu
decomposing systems into simpler independent 
pieces

• Hierarchical decomposition reduces system 
complexity through abstraction
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Main Robot Architectures

• Deliberative

– Top-down approach
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Main Robot Architectures

• Reactive/Behavior-based/Subsumption
– Responsive to dynamic changes
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Spectrum of control
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Main Robot Architectures

• Layered

– Integration between reactivity and 
deliberative
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Middleware

• Components need to share information

• To make the system modular, a middleware can 
be designed, i.e., the way that components in a 
robot architecture communicate
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Basic approaches for message passing

• Client/server: send information as generated by 
producer (push) or as requested by consumer 
(pull)

• Publish/Subscribe: consumers request a 
subscription to a producer and producer sends 
generated subscribed data to consumers

– Peer-to-peer: direct connection with producer that 
sends timestamped data

– Blackboard-based: middle entity that stores the last 
instance of data
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How to design a robot architecture

• Drawing from software engineering, first all of 
the requirements and desiderata should be 
explicitly defined

– What are the tasks?

– What actions are necessary to accomplish them?

– What data is necessary to do the tasks?

– What capabilities the robot will have?

– Who are the robot’s users?

– Will the robot architecture used for other 
tasks/robots?

CSCE 574: Robotics 11



Robot Architecture Features for Research

• Hardware abstraction

• OS independent

• Open access

• Robustness

• ...
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Robot Architecture Features for Research

• Modularity

– Support for multiple components

– Communication between components

– Easy way to write own components

– Possibility to replace individual components

• Support for decentralized components

• …
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Robot Architecture Features for Research

• Support for setting at runtime parameters, handled 
centrally

– Fixed, through files

– Dynamically

• Support to log data (timestamped)

• Way to visualize the system and the data

• …
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Robot-Dependent Frameworks

• Ndirect, seriald (Nomadics)

• RHeXLib (University of Michigan - Ann Arbor, 
McGill)

• ...
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Robot Independent Frameworks

• ROS (Willow Garage)
• MOOS (Paul Newman, Oxford)
• IPC (Reid Simmons— CMU)
• LCM (Albert Huang, Edwin Olson, David Moore— MIT)
• Player (Bryan Gerkey, Richard Vaughan, Andrew 

Howard— USC)
• OROCOS (Herman Bruyninckx, Peter Soetens, KU Leuven)
• OpenRTM (Japan's National Institute of Advanced 

Industrial Science and Technology)
• YARP (Italian Institute of Technology)
• Microsoft Robotics Studio
• ...
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Best practices

• All modules should use

–The same units (SI units)

–The same coordinate frames (or provide 
relations between a common reference 
frame)
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Best practices

• When writing software given the 
modularity it is advisable to follow some 
style guide

• Also properly documenting the code is 
important

• Unit testing should be performed to ensure 
no problem with other components
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ROS example

• ROS suggests to follow some style guide
– http://wiki.ros.org/StyleGuide

• For documenting, the code, Doxygen is used

• For unit testing, basically unittest and gtest are used

• Debug for C++ node can be performed through gdb by 
using launch-prefix="xterm -e gdb --args“ 

when running the node
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ROS example

• The component used in ROS is a node

• Typically, a node represents one task (driver, 
localization, mapping, path planning, …)

• Nodes run in parallel

• To debug problems, use rqt_graph
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ROS example

• The main mean of communication in ROS are topics 
and messages

• However, there are other ways for nodes to 
communicate with each other
– Services: similar to Remote Procedure Calls

– Actionlib: preemptable tasks
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ROS example

• How to decide what to use:

–Topics: especially for stream of data

–Services: execution of fast tasks

–Actions: execution of tasks that need to 
be tracked and should be preempted in 
some cases
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ROS example

• In a multirobot settings, a possibility is 
to share the ROS master over all of the 
computers
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ROS example

• However, to have the system more 
robust, multi-master-fkie can be used 
to allow robots to see other ROS 
masters
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ROS example

• Parameters can be easily set
–Statically: rosparam

–Dynamically: rqt_reconfigure

• Be careful in which namespace the 
parameters are defined: global or private
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ROS example

• There are some standards defined in 
ROS for unit measures and reference 
frames (REP 103, 105)
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• Reference frames are 
usually stored with tf



Source: clearpathrobotics.com

ROS example

• There are some useful tools to debug tf
problems from the tf package (see 
http://wiki.ros.org/tf/Debugging%20too
ls)

• e.g., view_frames
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ROS example

• rviz can be used to visualize data
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ROS example

• Logging data streams can be achieved by 
using rosbag

• Remember the ROS parameter sim_time
especially to run algorithms on bag files 
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ROS example

• Logging messages are published in rosout topic
– Different log levels should be used according to the 

severity of the message

• rqt_console can be used to visualize them
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Best practices

• Sound experimental methodologies should be in place, 
following scientific principles
– Comparison

– Reproducibility

– Repeatability

– Justification/explanation

• For properly assessing the goodness of an algorithm, the 
following aspects should be considered:
– Realism of environments and robot setup

– Evaluation criteria

– Sensitivity analysis

– Statistical analysis (e.g., ANOVA)

– ...
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Best practices

• Logging data is important so that
– No continuous human supervision

– Collecting training data

– Some post-processing can be applied

– Performance evaluation

– Debugging and reproducing failures

– ...

• The type of data to log depends on the specific task, 
algorithm being evaluated, …

• Visualization is important especially in robotics given the 
grounding to the real physical world
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Simulations

• Simulators partially model the world and as such will never 
replace real world experiments

• "Simulations are doomed to succeed"
– Simulations must be verified

• However, if critically used, simulations are useful because
– Easy to compare results with ground truth

– Control the amount of noise

– Control the time

– Possibility to execute thousands of runs

– No hardware problems

– Ease the debugging process

– ...
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Robotic Simulator

• Gazebo (OSRF)
• Stage (Vaughan – Simon Fraser University)
• UWSim (Prats, Perez, Fernandez, Sanz – Universitat Universitat

Universitat Jaume I)
• USARSim (Carpin – UC Merced, Lewis , Wang – U Pittsburgh, 

Balakirsky, Scrapper – NIST)
• v-rep (Coppelia Robotics)
• RHeX SimSect
• Webots (Cyberbotics)
• MORSE (LAAS-CNRS)
• Nclient, server (Nomadics)
• RD11 (McGill)
• ...
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Best practices

• Before performing any field experiments, carry out any 
calibration process needed for the system to work 
properly

– e.g., collecting footage for calibrating cameras
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Best practices

• For field experiments, it is important to plan missions
– Where to perform experiments

– What are the goals for the experiment

– Estimate time and energy

– Mission logistics

– Is there any regulation that must be complied?

– Plan the data to be logged and collected and the parameters 
to be set

• Note that before actually going for a field experiment
– Ensure everything is tested and software is updated and 

running

– Batteries are fully charged
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Discussion

• Currently no single architecture has proven to be 
suited for all applications 

• Robot architectures should provide 

– Transparent flexible message-based communication 
network

– Easy to use and transparent logging and playback 
capabilities

– Centralized parameter handling

– Abstraction of the actual hardware to focus on 
higher level components
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