
Ioannis Rekleitis

Research Robotic Software Design, Development, 
and Testing

Alberto Quattrini Li
albertoq@cse.sc.edu



Research Process

• Identify problem of interest
– Why is it important to solve it
– What has been done in the literature

• Study, design, and develop the algorithm for robotic 
applications
– Approximability, approximation
– Space and computational complexity
– Heuristics

• Deploy algorithm 
– Simulation
– Fielded robots

• Evaluate performance of algorithm on experiments
CSCE 574: Robotics 2



Software for a robot

• Robots are complex systems that involve a large number of 
individual capabilities

• Robot architecture is the set of principles, building blocks, 
and tools for designing robots
– Architectural structure: system into subsystems with interaction
– Architectural style: how communication happens

• Currently in a robot there might be multiple robot 
architectures

• However, a well-conceived architecture can have significant 
advantages for specification, execution, and validation

CSCE 574: Robotics 3



Robot Architectures Decomposition

• Modular decomposition reduces complexity bu
decomposing systems into simpler independent 
pieces

• Hierarchical decomposition reduces system 
complexity through abstraction

CSCE 574: Robotics 4



Main Robot Architectures

• Deliberative

– Top-down approach

CSCE 574: Robotics 5

Sense

PlanAct

Source: [Brooks, 1985, MIT]



Main Robot Architectures

• Reactive/Behavior-based/Subsumption
– Responsive to dynamic changes

CSCE 574: Robotics 6

Sense Act

Source: [Brooks, 1985, MIT]



Spectrum of control

CSCE 574: Robotics 7

Source: [Arkin, 1998, MIT Press]



Main Robot Architectures

• Layered

– Integration between reactivity and 
deliberative

CSCE 574: Robotics 8

Sense Act

Plan

Source: ni.com



Middleware

• Components need to share information

• To make the system modular, a middleware can 
be designed, i.e., the way that components in a 
robot architecture communicate

CSCE 574: Robotics 9

Process A Process BShared 
memory

Direct

Process A Process B
Communication 

channel

msg msg
Message 
passing



Basic approaches for message passing

• Client/server: send information as generated by 
producer (push) or as requested by consumer 
(pull)

• Publish/Subscribe: consumers request a 
subscription to a producer and producer sends 
generated subscribed data to consumers

– Peer-to-peer: direct connection with producer that 
sends timestamped data

– Blackboard-based: middle entity that stores the last 
instance of data

CSCE 574: Robotics 10



How to design a robot architecture

• Drawing from software engineering, first all of 
the requirements and desiderata should be 
explicitly defined

– What are the tasks?

– What actions are necessary to accomplish them?

– What data is necessary to do the tasks?

– What capabilities the robot will have?

– Who are the robot’s users?

– Will the robot architecture used for other 
tasks/robots?

CSCE 574: Robotics 11



Robot Architecture Features for Research

• Hardware abstraction

• OS independent

• Open access

• Robustness

• ...

CSCE 574: Robotics 12



Robot Architecture Features for Research

• Modularity

– Support for multiple components

– Communication between components

– Easy way to write own components

– Possibility to replace individual components

• Support for decentralized components

• …

CSCE 574: Robotics 13



Robot Architecture Features for Research

• Support for setting at runtime parameters, handled 
centrally

– Fixed, through files

– Dynamically

• Support to log data (timestamped)

• Way to visualize the system and the data

• …

CSCE 574: Robotics 14



Robot-Dependent Frameworks

• Ndirect, seriald (Nomadics)

• RHeXLib (University of Michigan - Ann Arbor, 
McGill)

• ...

CSCE 574: Robotics 15



Robot Independent Frameworks

• ROS (Willow Garage)
• MOOS (Paul Newman, Oxford)
• IPC (Reid Simmons— CMU)
• LCM (Albert Huang, Edwin Olson, David Moore— MIT)
• Player (Bryan Gerkey, Richard Vaughan, Andrew 

Howard— USC)
• OROCOS (Herman Bruyninckx, Peter Soetens, KU Leuven)
• OpenRTM (Japan's National Institute of Advanced 

Industrial Science and Technology)
• YARP (Italian Institute of Technology)
• Microsoft Robotics Studio
• ...

CSCE 574: Robotics 16



Best practices

• All modules should use

–The same units (SI units)

–The same coordinate frames (or provide 
relations between a common reference 
frame)

CSCE 574: Robotics 17



Best practices

• When writing software given the 
modularity it is advisable to follow some 
style guide

• Also properly documenting the code is 
important

• Unit testing should be performed to ensure 
no problem with other components

CSCE 574: Robotics 18



ROS example

• ROS suggests to follow some style guide
– http://wiki.ros.org/StyleGuide

• For documenting, the code, Doxygen is used

• For unit testing, basically unittest and gtest are used

• Debug for C++ node can be performed through gdb by 
using launch-prefix="xterm -e gdb --args“ 

when running the node

CSCE 574: Robotics 19

http://wiki.ros.org/StyleGuide


ROS example

• The component used in ROS is a node

• Typically, a node represents one task (driver, 
localization, mapping, path planning, …)

• Nodes run in parallel

• To debug problems, use rqt_graph

CSCE 574: Robotics 20



ROS example

• The main mean of communication in ROS are topics 
and messages

• However, there are other ways for nodes to 
communicate with each other
– Services: similar to Remote Procedure Calls

– Actionlib: preemptable tasks

CSCE 574: Robotics 21



ROS example

• How to decide what to use:

–Topics: especially for stream of data

–Services: execution of fast tasks

–Actions: execution of tasks that need to 
be tracked and should be preempted in 
some cases

CSCE 574: Robotics 22



ROS example

• In a multirobot settings, a possibility is 
to share the ROS master over all of the 
computers

CSCE 574: Robotics 23



ROS example

• However, to have the system more 
robust, multi-master-fkie can be used 
to allow robots to see other ROS 
masters

CSCE 574: Robotics 24



ROS example

• Parameters can be easily set
–Statically: rosparam

–Dynamically: rqt_reconfigure

• Be careful in which namespace the 
parameters are defined: global or private

CSCE 574: Robotics 25



ROS example

• There are some standards defined in 
ROS for unit measures and reference 
frames (REP 103, 105)

CSCE 574: Robotics 26
Source: openrobots.org

• Reference frames are 
usually stored with tf



Source: clearpathrobotics.com

ROS example

• There are some useful tools to debug tf
problems from the tf package (see 
http://wiki.ros.org/tf/Debugging%20too
ls)

• e.g., view_frames

CSCE 574: Robotics 27



ROS example

• rviz can be used to visualize data

CSCE 574: Robotics 28
Source: iheartrobotics.com



ROS example

• Logging data streams can be achieved by 
using rosbag

• Remember the ROS parameter sim_time
especially to run algorithms on bag files 

CSCE 574: Robotics 29Source: ros.org



ROS example

• Logging messages are published in rosout topic
– Different log levels should be used according to the 

severity of the message

• rqt_console can be used to visualize them

CSCE 574: Robotics 30
Source: ros.org



Best practices

• Sound experimental methodologies should be in place, 
following scientific principles
– Comparison

– Reproducibility

– Repeatability

– Justification/explanation

• For properly assessing the goodness of an algorithm, the 
following aspects should be considered:
– Realism of environments and robot setup

– Evaluation criteria

– Sensitivity analysis

– Statistical analysis (e.g., ANOVA)

– ...

CSCE 574: Robotics 31



Best practices

• Logging data is important so that
– No continuous human supervision

– Collecting training data

– Some post-processing can be applied

– Performance evaluation

– Debugging and reproducing failures

– ...

• The type of data to log depends on the specific task, 
algorithm being evaluated, …

• Visualization is important especially in robotics given the 
grounding to the real physical world

CSCE 574: Robotics 32



Simulations

• Simulators partially model the world and as such will never 
replace real world experiments

• "Simulations are doomed to succeed"
– Simulations must be verified

• However, if critically used, simulations are useful because
– Easy to compare results with ground truth

– Control the amount of noise

– Control the time

– Possibility to execute thousands of runs

– No hardware problems

– Ease the debugging process

– ...
CSCE 574: Robotics 33



Robotic Simulator

• Gazebo (OSRF)
• Stage (Vaughan – Simon Fraser University)
• UWSim (Prats, Perez, Fernandez, Sanz – Universitat Universitat

Universitat Jaume I)
• USARSim (Carpin – UC Merced, Lewis , Wang – U Pittsburgh, 

Balakirsky, Scrapper – NIST)
• v-rep (Coppelia Robotics)
• RHeX SimSect
• Webots (Cyberbotics)
• MORSE (LAAS-CNRS)
• Nclient, server (Nomadics)
• RD11 (McGill)
• ...

CSCE 574: Robotics 34



Best practices

• Before performing any field experiments, carry out any 
calibration process needed for the system to work 
properly

– e.g., collecting footage for calibrating cameras

CSCE 574: Robotics 35



Best practices

• For field experiments, it is important to plan missions
– Where to perform experiments

– What are the goals for the experiment

– Estimate time and energy

– Mission logistics

– Is there any regulation that must be complied?

– Plan the data to be logged and collected and the parameters 
to be set

• Note that before actually going for a field experiment
– Ensure everything is tested and software is updated and 

running

– Batteries are fully charged

CSCE 574: Robotics 36



Discussion

• Currently no single architecture has proven to be 
suited for all applications 

• Robot architectures should provide 

– Transparent flexible message-based communication 
network

– Easy to use and transparent logging and playback 
capabilities

– Centralized parameter handling

– Abstraction of the actual hardware to focus on 
higher level components

CSCE 574: Robotics 37


