
Ioannis Rekleitis

Con$iguration	 Space	

Configuration Space

Configuration Space

Definition
 A robot configuration is a specification
of the positions of all robot points
relative to a fixed coordinate system

 Usually a configuration is expressed as
a “vector” of position/orientation
parameters

CSCE-574 Robotics

What is a Path?

qgoal qinit

qgoal
qinit

CSCE-574 Robotics

What is a Path?

CSCE-574 Robotics

Tool: Configuration Space
(C-Space C)

q1

q1

q2

q2

CSCE-574 Robotics

Tool: Configuration Space
(C-Space C)

q1

q1

q2

q2

CSCE-574 Robotics

Tool: Configuration Space
(C-Space C)

CSCE-574 Robotics

Articulated Robot Example

q1

q2

q = (q1,q2,…,q10)

CSCE-574 Robotics

Configuration Space of a Robot

 Space of all its possible configurations
 But the topology of this space is usually
not that of a Cartesian space

C = S1 x S1

CSCE-574 Robotics

Configuration Space of a Robot

 Space of all its possible configurations
 But the topology of this space is usually
not that of a Cartesian space

C = S1 x S1

CSCE-574 Robotics

Configuration Space of a Robot

 Space of all its possible configurations
 But the topology of this space is usually
not that of a Cartesian space

C = S1 x S1

CSCE-574 Robotics

Parameterization of SO(3)
•  Euler angles: (φ,θ,ψ)

•  Unit quaternion:
 (cos θ/2, n1 sin θ/2, n2 sin θ/2, n3 sin θ/2)

x

y

z

x
y

z

φ

x

y

z

θ

x

y

z

ψ

1 à 2 à 3 à 4

CSCE-574 Robotics

A welding robot

CSCE-574 Robotics

A Stuart Platform

CSCE-574 Robotics

Barrett WAM arm on a mobile platform

CSCE-574 Robotics

Configuration Space Obstacle

CSCE-574 Robotics

Two link path

CSCE-574 Robotics

2D Rigid Object

CSCE-574 Robotics

The Configuration Space

CSCE-574 Robotics

Moving a piano

CSCE-574 Robotics

Parameterization of Torus

CSCE-574 Robotics

Linear-Time Computation of
C-Obstacle in 2-D

(convex polygons)

CSCE-574 Robotics

Rigid Robot Translating and
Rotating in 2-D

CSCE-574 Robotics

Free and Semi-Free Paths

§  A free path lies entirely in the free
space F

§  A semi-free path lies entirely in the
semi-free space

CSCE-574 Robotics

CSCE-574 Robotics

CSCE-574 Robotics

Notion of Homotopic Paths
 Two paths with the same endpoints are
homotopic if one can be continuously deformed
into the other
 R x S1 example:

  τ1 and τ2 are homotopic
  τ1 and τ3 are not homotopic
 In this example, infinity of homotopy classes

q

q’
τ1

τ2
τ3

CSCE-574 Robotics

Connectedness of C-Space
 C is connected if every two configurations can be
connected by a path
 C is simply-connected if any two paths
connecting the same endpoints are homotopic
Examples: R2 or R3
 Otherwise C is multiply-connected
Examples: S1 and SO(3) are multiply- connected:
- In S1, infinity of homotopy classes
- In SO(3), only two homotopy classes

CSCE-574 Robotics

Classes of Homotopic Free Paths

CSCE-574 Robotics

Probabilistic Roadmaps PRMs

The	 basic	 idea	 behind	 PRM	 is	 to	 take	 random	 samples	 from	 the	
configura:on	 space	 of	 the	 robot,	 tes:ng	 them	 for	 whether	 they	 are	 in	
the	 free	 space,	 and	 use	 a	 local	 planner	 to	 a>empt	 to	 connect	 these	
configura:ons	 to	 other	 nearby	 configura:ons.	 The	 star:ng	 and	 goal	
configura:ons	 are	 added	 in,	 and	 a	 graph	 search	 algorithm	 is	 applied	 to	
the	 resul:ng	 graph	 to	 determine	 a	 path	 between	 the	 star:ng	 and	 goal	
configura:ons.	
	
Kavraki,	 L.	 E.;	 Svestka,	 P.;	 Latombe,	 J.-‐C.;	 Overmars,	 M.	 H.	 (1996),	 "Probabilis:c	 roadmaps	 for	
path	 planning	 in	 high-‐dimensional	 configura:on	 spaces",	 IEEE	 Transac:ons	 on	 Robo:cs	 and	
Automa:on	 12	 (4):	 566–580.	

	
CSCE-574 Robotics

Rapidly-exploring Random Trees

•  A point P in C is randomly chosen.
•  The nearest vertex in the RRT is selected.
•  A new edge is added from this vertex in the

direction of P, at distance ε.
•  The further the algorithm goes, the more

space is covered.

CSCE-574 Robotics

Rapidly-expanding Random Trees

Starting vertex

CSCE-574 Robotics

Rapidly-expanding Random Trees

Vertex randomly drawn

CSCE-574 Robotics

Rapidly-expanding Random Trees

Nearest vertex

CSCE-574 Robotics

Rapidly-expanding Random Trees

New vertex ε

The vertex is in Cfree

CSCE-574 Robotics

Rapidly-expanding Random Trees

Vertex randomly drawn

CSCE-574 Robotics

Rapidly-expanding Random Trees

Nearest point

CSCE-574 Robotics

Rapidly-expanding Random Trees

New vertex ε

The vertex is in Cfree

CSCE-574 Robotics

Rapidly-expanding Random Trees

CSCE-574 Robotics

Rapidly-expanding Random Trees

Vertex randomly drawn

CSCE-574 Robotics

Rapidly-expanding Random Trees

Nearest vertex

CSCE-574 Robotics

Rapidly-expanding Random Trees

New vertex

CSCE-574 Robotics

Rapidly-expanding Random Trees

And it continues…

CSCE-574 Robotics

RRT-Connect

•  We grow two trees, one from the beginning
vertex and another from the end vertex

•  Each time we create a new vertex, we try to
greedily connect the two trees

CSCE-574 Robotics

RRT-Connect: example
Start

Goal
CSCE-574 Robotics

RRT-Connect: example

Random vertex

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example
We greedily connect the
bottom tree to our new
vertex

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

Obstacle found !

CSCE-574 Robotics

RRT-Connect: example

Now we swap roles !

CSCE-574 Robotics

RRT-Connect: example

Now we swap roles !

CSCE-574 Robotics

RRT-Connect: example

We grow the bottom tree

CSCE-574 Robotics

RRT-Connect: example

Now we greedily try to connect

And we continue…

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

Connection made !

CSCE-574 Robotics

RRT-Connect: example

Now we have a solution !

CSCE-574 Robotics

RRT-Connect: example

Last step: path smoothing

CSCE-574 Robotics

RRT-Connect: example

Last step: path smoothing

CSCE-574 Robotics

An RRT in 2D

Example from: http://msl.cs.uiuc.edu/rrt/gallery_2drrt.html CSCE-574 Robotics

A Puzzle solved using RRTs
The goal is the separate the two bars from
each other. You might have seen a puzzle
like this before. The example was
constructed by Boris Yamrom, GE
Corporate Research & Development
Center, and posted as a research benchmark
by Nancy Amato at Texas A&M University.
It has been cited in many places as a one of
the most challenging motion planning
examples. In 2001, it was solved by using a
balanced bidirectional RRT, developed by
James Kuffner and Steve LaValle. There are
no special heuristics or parameters that
were tuned specifically for this problem.
On a current PC (circa 2003), it
consistently takes a few minutes to solve.

CSCE-574 Robotics

Lunar Landing

The following is an open loop trajectory that was planned in a 12-dimensional state space. The
video shows an X-Wing fighter that must fly through structures on a lunar base before entering
the hangar. This result was presented by Steve LaValle and James Kuffner at the Workshop on
the Algorithmic Foundations of Robotics, 2000.

CSCE-574 Robotics

