

UNIVERSITY OF SOUTH CAROLINA

CSCE 574 ROBOTICS

Path Planning

Ioannis Rekleitis

Outline

- Path Planning
 - Visibility Graph
 - Potential Fields
 - Bug Algorithms
 - Skeletons/Voronoi Graphs
 - C-Space

Motion Planning

- The ability to go from **A** to **B**
 - Known map Off-line planning
 - Unknown Environment –Online planning
 - Static/Dynamic Environment

Abstract

- Topological
- •Metric
- •Feature Based
- •1D,2D,2.5D,3D

Path Planning: Assumptions

- Known Map
- Roadmaps (Graph representations)
- Polygonal Representation

• Connect Initial and goal locations with all the visible vertices

- Connect initial and goal locations with all the visible vertices
- Connect each obstacle vertex to every visible obstacle vertex

- Connect initial and goal locations with all the visible vertices
- Connect each obstacle vertex to every visible obstacle vertex
- Remove edges that intersect the interior of an obstacle

- Connect initial and goal locations with all the visible vertices
- Connect each obstacle vertex to every visible obstacle vertex
- Remove edges that intersect the interior of an obstacle

- An alternative path
- Alternative name: "Rubber band algorithm"

Major Fault

- Point robot
- Path planning like that guarantees to hit the obstacles

Potential Field methods

• compute a repulsive force away from obstacles

CSCE-574 Robotics

Local techniques

Potential Field methods

- compute a repulsive force away from obstacles
- compute an attractive force toward the goal

Local techniques

Potential Field methods

- compute a repulsive force away from obstacles
- compute an attractive force toward the goal
- \rightarrow let the sum of the forces control the robot

CSCE-574 Robotics

Local techniques

Potential Field methods

- compute a repulsive force away from obstacles
- compute an attractive force toward the goal
- \rightarrow let the sum of the forces control the robot

CSCE-574 Robotics To a large extent, this is 19 computable from sensor readings

Sensor Based Calculations

Major Problem?

Local Minima!

Simulated Annealing

• Every so often add some random force

Limited-knowledge path planning

- Path planning with limited knowledge
 - Insect-inspired "bug" algorithms

Start

- known direction to goal
- otherwise local sensing
 - walls/obstacles encoders
- •"reasonable" world
- 1. finitely many obstacles in any finite disc
- 2. a line will intersect an obstacle finitely many times

Not truly modeling bugs...

Insects do use several cues for navigation:

visual landmarks

polarized light

chemical sensing

neither are the current bugsized robots

they're not ears...

Other animals use information from

magnetic fields

electric currents

temperature

migrating bobolink

Bug Strategy

Insect-inspired "bug" algorithms

- known direction to goal
- otherwise only local sensing walls/obstacles encoders

"Bug 0" algorithm

1) head toward goal

2) follow obstacles until you can head toward the goal again

3) continue

Does It Work?

Bug 1

Insect-inspired "bug" algorithms

- known direction to goal •
- otherwise only local sensing walls/obstacles encoders

"Bug 1" algorithm

1) head toward goal

Bug 1

Insect-inspired "bug" algorithms

•

- known direction to goal
- otherwise only local sensing walls/obstacles encoders

"Bug 1" algorithm

1) head toward goal

2) if an obstacle is encountered, circumnavigate it *and* remember how close you get to the goal

Bug 1

Insect-inspired "bug" algorithms

- known direction to goal
- otherwise only local sensing walls/obstacles encoders

"Bug 1" algorithm

- 1) head toward goal
- 2) if an obstacle is encountered, circumnavigate it *and* remember how close you get to the goal
- 3) return to that closest point (by wall-following) and continue

Bug 1 analysis

Distance Traveled

What are bounds on the path length that the robot takes?

Available Information:

D = straight-line distance from start to goal

 P_i = perimeter of the *i* th obstacle

Lower and upper bounds?

Lower bound:

Upper bound:

Bug 1 analysis

Distance Traveled

What are bounds on the path length that the robot takes?

Available Information:

D = straight-line distance from start to goal

 P_i = perimeter of the *i* th obstacle

Lower and upper bounds?

Lower bound: D

Upper bound:

Bug 1 analysis

Distance Traveled

What are bounds on the path length that the robot takes?

Available Information:

 \mathbf{D} = straight-line distance from start to goal

 P_i = perimeter of the *i* th obstacle

Lower and upper bounds?

Lower bound: D

Upper bound: $D + 1.5 \sum_{i} P_{i}$

How good a bound?

How good an algorithm?

Bug Mapping

A better bug?

Call the line from the starting point to the goal the *s-line*

A better bug?

Call the line from the starting point to the goal the *s-line*

"Bug 2" algorithm

1) head toward goal on the *s-line*

A better bug?

Call the line from the starting point to the goal the *s-line*

"Bug 2" algorithm

1) head toward goal on the *s-line*

2) if an obstacle is in the way, follow it until encountering the sline again.

A better bug?

s-line

"Bug 2" algorithm

1) head toward goal on the *s-line*

2) if an obstacle is in the way, follow it until encountering the sline again.

3) Leave the obstacle and continue toward the goal

A better bug?

"Bug 2" algorithm

1) head toward goal on the *s-line*

2) if an obstacle is in the way, follow it until encountering the sline again *closer to the goal*.

3) Leave the obstacle and continue toward the goal

Distance Traveled

What are bounds on the path length that the robot takes?

Available Information:

- \mathbf{D} = straight-line distance from start to goal
- P_i = perimeter of the *i* th obstacle

Lower and upper bounds?

Lower bound:

Upper bound:

Distance Traveled

What are bounds on the path length that the robot takes?

Available Information:

 \mathbf{D} = straight-line distance from start to goal

- P_i = perimeter of the *i* th obstacle
- N_i = number of s-line intersections with the *i* th obstacle

Lower and upper bounds?

Lower bound:

Upper bound:

Distance Traveled

What are bounds on the path length that the robot takes?

Available Information:

 \mathbf{D} = straight-line distance from start to goal

- P_i = perimeter of the *i* th obstacle
- N_i = number of s-line intersections with the *i* th obstacle

Lower and upper bounds?

Lower bound: D

Upper bound:

Distance Traveled

What are bounds on the path length that the robot takes?

Available Information:

D = straight-line distance from start to goal

 P_i = perimeter of the *i* th obstacle

 N_i = number of s-line intersections with the *i* th obstacle

Lower and upper bounds?

D Lower bound:

Upper bound: $D + 0.5 \sum_{i} N_i P_i$

head-to-head comparison

or thorax-to-thorax, perhaps

What are worlds in which Bug 2 does better than Bug 1 (and vice versa) ?

Bug 1 beats Bug 2

head-to-head comparison

or thorax-to-thorax, perhaps

What are worlds in which Bug 2 does better than Bug 1 (and vice versa) ?

Other bug-like algorithms

The Pledge maze-solving algorithm

- 1. Go to a wall
- 2. Keep the wall on your right
- 3. Continue until out of the maze

Other bug-like algorithms

The Pledge maze-solving algorithm

- 1) Go to a wall
- 2) Keep the wall on your right
- 3) Continue until out of the maze

int a[1817];main(z,p,q,r){for(p=80;q+p-80;p=2*a[p]) for(z=9;z--;)q=3&(r=time(0)+r*57)/7,q=q?q-1?q-2?1-p %79?-1:0:p%79-77?1:0:p<1659?79:0:p>158?-79:0,q?!a[p +q*2]?a[p+=a[p+=q]=q]=q:0:0;for(;q++-1817;)printf(q %79?"%c":"%c\n"," #"[!a[q-1]]);}

IOCCC random maze generator

CSCE-574 Robotics

47

Tangent Bug

- Limited Range Sensor
- Tangent Bug relies on finding endpoints of finite, continues segments of the obstacles

Tangent Bug

Contact Sensor Tangent Bug

- 1. Robot moves toward goal until it hits obstacle 1 at H1
- 2. Pretend there is an infinitely small sensor range and the direction which minimizes the heuristic is to the right
- 3. Keep following obstacle until robot can go toward obstacle again
- 4. Same situation with second obstacle
- 5. At third obstacle, the robot turned left until it could not increase heuristic
- 6. D_followed is distance between M3 and goal, d_reach is distance between robot and goal because sensing distance is zero

CSCE-574 Robotics

Limited Sensor Range Tangent-Bug

Infinite Sensor Range Tangent Bug

Known Map

Brushfire Transform

The Wavefront Planner: Setup

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
З	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ο	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 1)

- Starting with the goal, set all adjacent cells with "0" to the current cell + 1
 - 4-Point Connectivity or 8-Point Connectivity?
 - Your Choice. We'll use 8-Point Connectivity in our example

7	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	
з	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	
Ο	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2	
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	

The Wavefront in Action (Part 2)

- Now repeat with the modified cells
 - This will be repeated until no 0's are adjacent to cells with values ≥ 2
- 0's will only remain when regions are unreachable

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
з	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4
1	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	З
Ο	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CSCE-574 Robotics																

The Wavefront in Action (Part 3)

• Repeat

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	ο
з	0	0	0	0	1	1	1	1	1	1	1	1	5	5	5	5
2	0	0	0	0	0	0	0	0	0	0	0	0	5	4	4	4
1	0	0	0	0	0	0	0	0	0	0	0	0	5	4	3	З
ο	0	0	0	0	0	0	0	0	0	0	0	0	5	4	3	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 3)

• Repeat

																	-
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	1	1	1	1	1	1	1	1	6	6	6	6	
3	0	0	0	0	1	1	1	1	1	1	1	1	5	5	5	5	
2	0	0	0	0	0	0	0	0	0	0	0	6	5	4	4	4	
1	0	0	0	0	0	0	0	0	0	0	0	6	5	4	3	3	
ο	0	0	0	0	0	0	0	0	0	0	0	6	5	4	3	2	
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	_

The Wavefront in Action (Part 3)

- Until Done
 - 0's would only remain in the unreachable areas

7	18	17	16	15	14	13	12	11	10	9	9	9	9	9	9	9	
6	17	17	16	15	14	13	12	11	10	9	8	8	8	8	8	8	
5	17	16	16	15	14	13	12	11	10	9	8	7	7	7	7	7	
4	17	16	15	15	1	1	1	1	1	1	1	1	6	6	6	6	
3	17	16	15	14	1	1	1	1	1	1	1	1	5	5	5	5	
2	17	16	15	14	13	12	11	10	9	8	7	6	5	4	4	4	
1	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	3	
0	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	0	1	2	З	4	5	6	78	3 9	91	0 1	.1 1	12	13	14	15	

The Wavefront in Action

- To find the shortest path, according to your metric, simply always move toward a cell with a lower number
 - The numbers generated by the Wavefront planner are roughly proportional to their distance from the goal

An alternative roadmap

These line segments make up the **Voronoi diagram** for the four points shown here.

Solves the "Post Office Problem"

These line segments make up the **Voronoi diagram** for the four points shown here.

Solves the "Post Office Problem"

or, perhaps, more important problems...

"true" Voronoi diagram (isolates a set of points)

<u>generalized</u> Voronoi diagram What is it?

Let B = the boundary of C_{free} . Let q be a point in C_{free} . (•)

Define *clearance*(q) = min { |q - p| }, for all $p \in B$

Define *clearance*(q) = min { |q - p| }, for all $p \in B$ Define *near*(q) = { $p \in B$ such that |q - p| = clearance(q) }

Evaluation

- + maximizes distance from obstacles
- + reduces to graph search
- + can be used in higher-dimensions
- nonoptimal
- real diagrams tend to be noisy
- Let B = the boundary of C_{free} . Let q be a point in C_{free} .

Define *clearance*(q) = min { |q - p| }, for all $p \in B$

Define *near*(q) = { $p \in B$ such that |q - p| = clearance(q) }

Generalized Voronoi Graph (GVG)

Generalized Voronoi Graph (GVG)

Generalized Voronoi Graph (GVG) •Access GVG

71

Generalized Voronoi Graph (GVG)

Access GVGFollow Edge

72

Generalized Voronoi Graph (GVG)

Access GVG •Home to the MeetPointFollow Edge

Generalized Voronoi Graph (GVG)

Access GVGHome to the MeetPointFollow EdgeSelect Edge

74

GVG construction using sonar

- Nomadic Scout
- Sonar (GVG navigation)
- Camera with omni-directional mirror (feature detection)
- Onboard 1.2 GHz processor

GVG construction using sonar

GVG construction using sonar

Slammer in Action

Removing Edges

CSCE-574 Robotics

Meetpoint Detection

- 3σ uncertainty ellipse of explored meetpoints
- Meetpoint degree (branching factor)
- Distances to local obstacles
- Relative angle bearings
- Edge signature
 - Edge length
 - Edge Curvature
- Vertex signal

Ear-based Exploration

Uncertainty Reduction

Before Loop-closure

After Loop-closure

Simulation

Code available online at https://github.com/QiwenZhang/gvg

CSCE-574 Robotics

Real Environment

Voronoi applications

A retraction of a 3d object == "medial surface" Skeletonizations resulting from constant-speed curve evolution

in 2d, it's called a *medial as*

skeleton → shape

curve evolution

where wavefronts collide

centers of maximal disks

again reduces a 2d (or higher) problem to a question about graphs...

skeleton \rightarrow shape

curve evolution

where wavefronts collide center

centers of maximal disks

again reduces a 2d (or higher) problem to a question about graphs...

Problems

The skeleton is sensitive to small changes in the object's boundary.

- graph isomorphism (and lots of 50th Report phase) : NP-complete 88

Roadmap problems

If an obstacle decides to roll away...

(or wasn't there to begin with)

