
Today’s Agenda

• Fourier Transform

• Discrete Time Fourier Transform

• Discrete Fourier Transform



Recall: Fourier Series

f(t) is a continuous function with period T, we have
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Spatial domain → Frequency domain

Frequency domain → Spatial domain

Recall: Fourier Transform in 1D 
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Forward transform

Inverse transform

Fourier transform pair



Basic Properties of FT

Linearity

Translation

Modulation

Scaling

Conjugation

Symmetry 
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FT of an Impulse
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FT of an Impulse
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𝐹 𝑒−𝑗2𝜋𝑡0𝑡 = 𝛿 −𝜇 − 𝑡0

𝐹 𝑒𝑗2𝜋𝑡0𝑡 = 𝛿(𝜇 − 𝑡0)

Symmetry property
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𝛿 𝑡 − 𝑡0 𝐹 𝜇 = 𝑒−𝑗2𝜋𝑢𝑡0

Scaling property
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Discrete Impulses and Sifting Property

Unit impulse 

Sifting property
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Impulse Train
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Sampling in Spatial Domain
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FT of an Impulse Train 
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FT of an Impulse and Impulse Train 
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FT of an impulse train is an impulse 

train in frequency domain
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Convolution

Convolution in the spatial domain

What is its FT?

How to prove it?
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Convolution
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Note: the image and the kernel should be the same size



Sampling in Spatial Domain
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Sampling in Spatial Domain
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What is Fourier Transform of ሚ𝑓 𝑡 ? 

෨𝐹 𝜇 = 𝐹 𝜇 ⨂𝑆 𝜇

FT of 𝑓(𝑡) 
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Sampling in Frequency Domain
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• Periodic

• Continuous

𝐹 𝑢

Over-sampling

Critical-sampling

Under-sampling



Critical Sampling

෨𝐹 𝜇  is periodic One period of ෨𝐹 𝜇  can represent ෨𝐹 𝜇  

Original signal can be reconstructed perfectly from sampled data  



Reconstruction and Sampling Theorem
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Aliasing – Under Sampling

Aliasing in Images. Have you ever come across 

an image like… | by Rishabh Gupta | Medium

https://medium.com/@rishabhgupta05/aliasing-in-images-73258df1dbd2
https://medium.com/@rishabhgupta05/aliasing-in-images-73258df1dbd2


Aliasing



Discrete-Time Fourier Transform
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Discrete data -> interval has discrete-time



Discrete-Time Fourier Transform
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Discrete-Time Fourier Transform
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Discrete-Time Fourier Transform

෨𝐹 𝜇 =
1

Δ𝑇
෍

𝑘=−∞

∞

𝐹(𝜇 −
𝑘

Δ𝑇
) = ෍

𝑘=−∞

∞

𝑓(𝑘∆𝑇) 𝑒−𝑗2𝜋𝜇𝑘∆𝑇

Sample ෨𝐹 𝜇  in one period 

with M equally spaced 

samples

Discrete Fourier 

Transform

෨𝐹 𝜇  is continuous → Difficult to implement in DSP applications



Note that

Total span of one period in spatial domain:  𝑇

1 unit in spatial domain:

Total M units in the frequency domain:

1 unit in frequency domain: 

Δ𝑇 =
1

𝑀
𝑇

1/Δ𝑇

Δ𝜇 = 1/(𝑀Δ𝑇)



Discrete Fourier Transform (DFT)

𝐹(𝑢) = ෍

𝑥=0

𝑀−1

𝑓(𝑥)𝑒−𝑗2𝜋𝑥𝑢/𝑀

𝑓(𝑥) =
1

𝑀
෍

𝑢=0

𝑀−1

𝐹(𝑢)𝑒𝑗2𝜋𝑢𝑥/𝑀
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coefficients of a 

combination of sinusoids

a finite sequence of 

equally spaced samples

• 1/𝑀 is the sampling interval

• 𝑢 is an integer → the frequency is an integer multiplier of 
2𝜋

𝑀

• Both input & output are finite



Discrete FT (DFT)
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• DFT is periodic with a period of M 

• Both input & output are finite

DFT is important for digital signal processing and digital 

image processing



Discrete FT (DFT)
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Circular Convolution:

• The convolution is periodic



Reading Assignments

Chapter 4.3 – 4.11


	Slide 1: Today’s Agenda 
	Slide 2: Recall: Fourier Series
	Slide 3: Recall: Fourier Transform in 1D 
	Slide 4: Basic Properties of FT
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 14: Convolution
	Slide 15: Convolution
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28: Note that
	Slide 29: Discrete Fourier Transform (DFT)
	Slide 31: Discrete FT (DFT)
	Slide 32: Discrete FT (DFT)
	Slide 43: Reading Assignments

