Junction tree propagation - BNDG 4-4.6

Finn V. Jensen and Thomas D. Nielsen

Message Passing in Join Trees

More sophisticated inference technique; used in most implemented Bayesian Network systems (e.g. Hugin).

Overview:

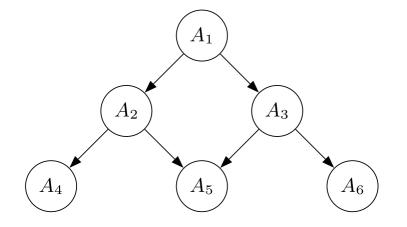
Given: Bayesian network for $P(\mathbf{V})$

 \Downarrow Preprocessing

Construct a new internal representation for $P(\mathbf{V})$ called a *junction tree*

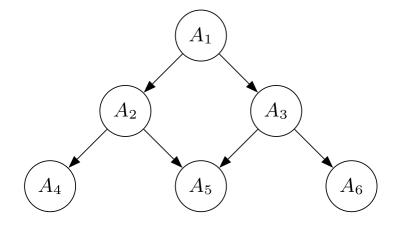
↓ Inference/Updating

Retrieve $P(A \mid \mathbf{E} = \mathbf{e})$ for single $A \in \mathbf{V}$



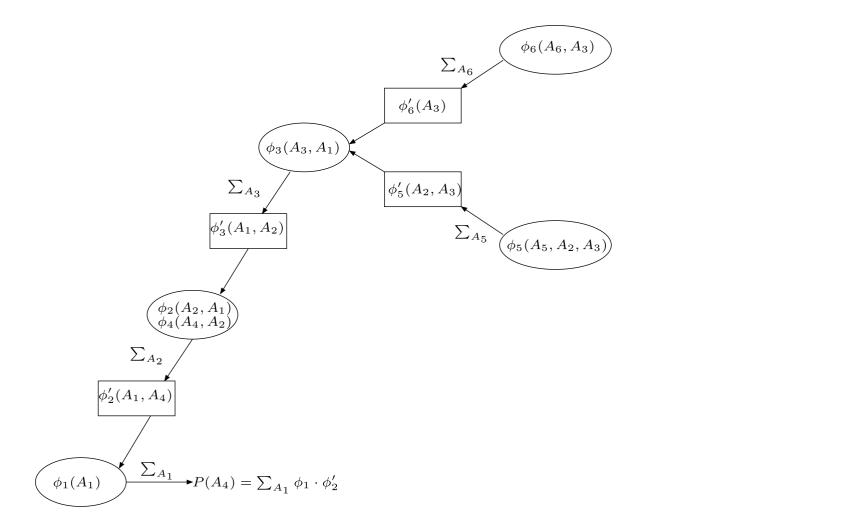
$P(A_4)$

 $=\sum_{A_1}\sum_{A_2}\sum_{A_3}\sum_{A_5}\sum_{A_5}\sum_{A_6}\phi_1(A_1)\phi_2(A_2,A_1)\phi_3(A_3,A_1)\phi_4(A_4,A_2)\phi_5(A_5,A_2,A_3)\phi_6(A_6,A_3)$

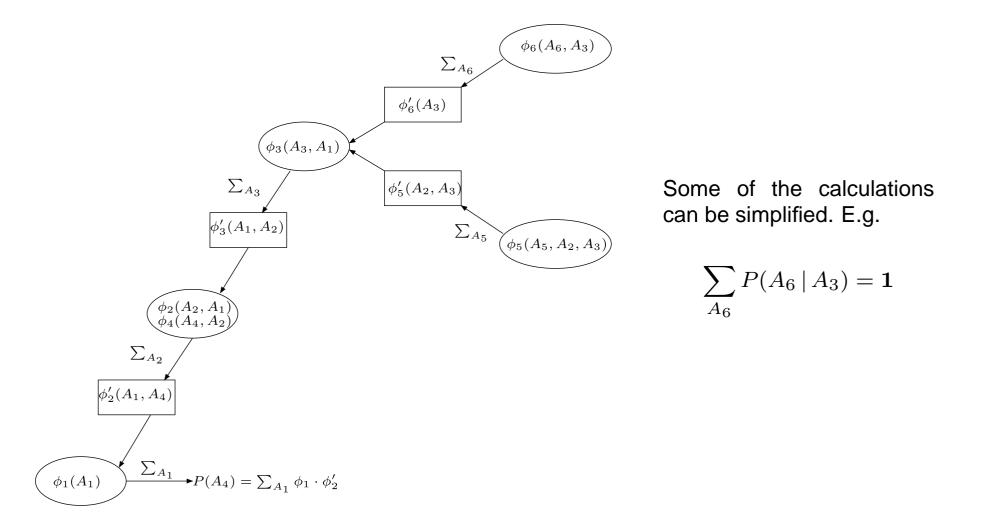


$P(A_4)$

 $= \sum_{A_1} \sum_{A_2} \sum_{A_3} \sum_{A_5} \sum_{A_6} \phi_1(A_1) \phi_2(A_2, A_1) \phi_3(A_3, A_1) \phi_4(A_4, A_2) \phi_5(A_5, A_2, A_3) \phi_6(A_6, A_3)$ $= \sum_{A_1} \phi_1(A_1) \sum_{A_2} \phi_2(A_2, A_1) \phi_4(A_4, A_2) \sum_{A_3} \phi_3(A_3, A_1) \sum_{A_5} \phi_5(A_5, A_2, A_3) \sum_{A_6} \phi_6(A_6, A_3)$

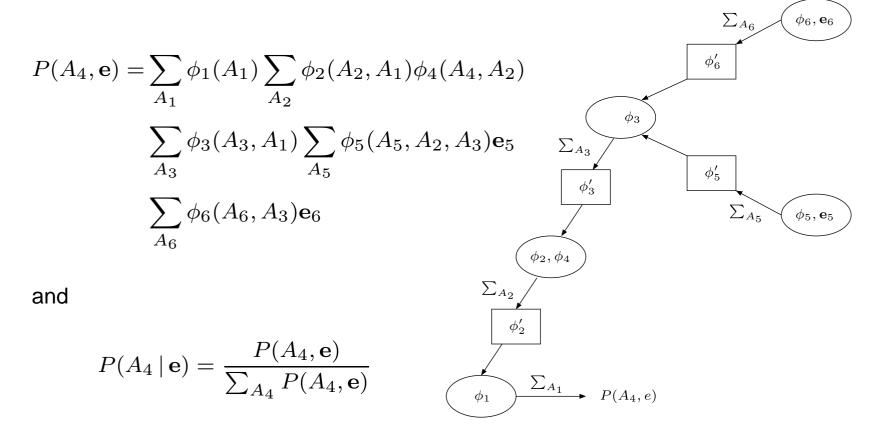


 $P(A_4) = \sum_{A_1} \phi_1(A_1) \sum_{A_2} \phi_2(A_2, A_1) \phi_4(A_4, A_2) \sum_{A_3} \phi_3(A_3, A_1) \sum_{A_5} \phi_5(A_5, A_2, A_3) \sum_{A_6} \phi_6(A_6, A_3)$

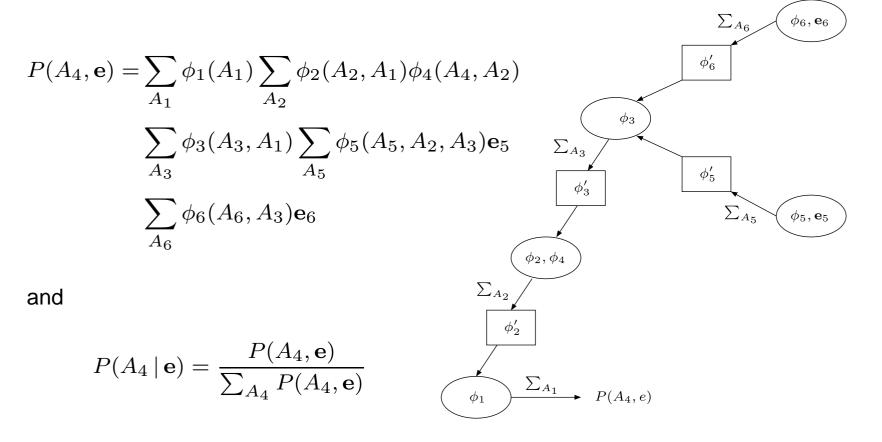


 $P(A_4) = \sum_{A_1} \phi_1(A_1) \sum_{A_2} \phi_2(A_2, A_1) \phi_4(A_4, A_2) \sum_{A_3} \phi_3(A_3, A_1) \sum_{A_5} \phi_5(A_5, A_2, A_3) \sum_{A_6} \phi_6(A_6, A_3)$

Assume evidence $\mathbf{e} = (\mathbf{e}_5, \mathbf{e}_6)$; represented as 0/1 potentials. Then:

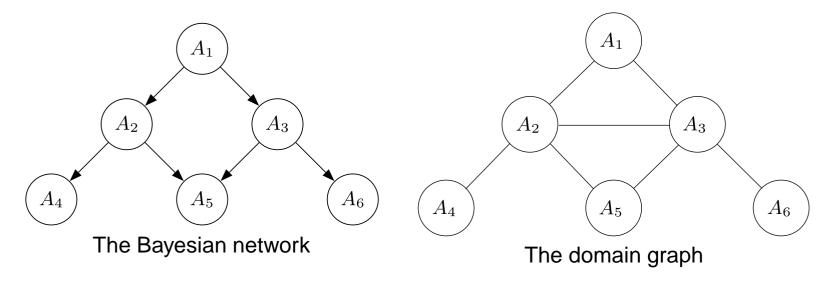


Assume evidence $e = (e_5, e_6)$; represented as 0/1 potentials. Then:



The process is sufficiently general to handle all evidence scenarios!

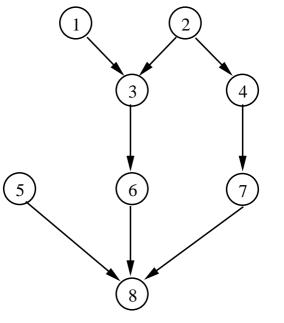
 \Rightarrow We look for a general structure in which these calculations can be performed for all variables.



The link (A_2, A_3) is called a moral link.

Moralization in general

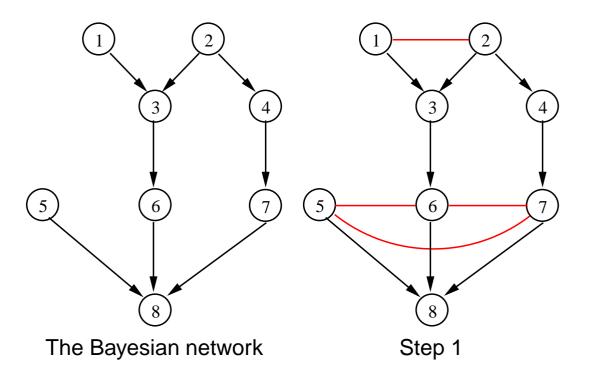
- For all nodes X: Connect pairwise all parents of X with undirected links.
- Replace all original directed links by undirected ones.



The Bayesian network

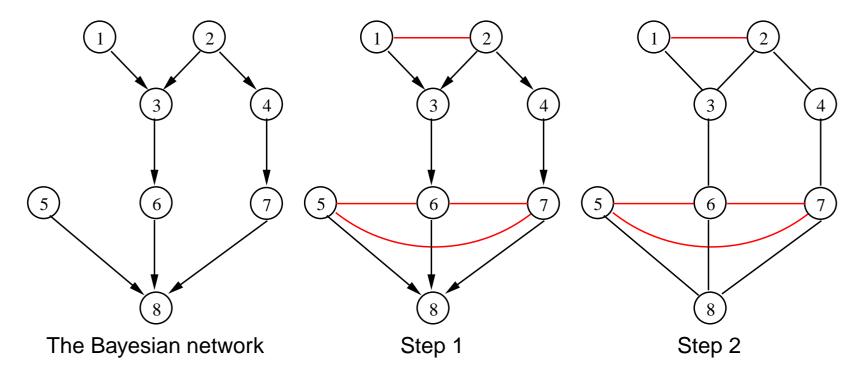
Moralization in general

- For all nodes X: Connect pairwise all parents of X with undirected links.
- Replace all original directed links by undirected ones.



Moralization in general

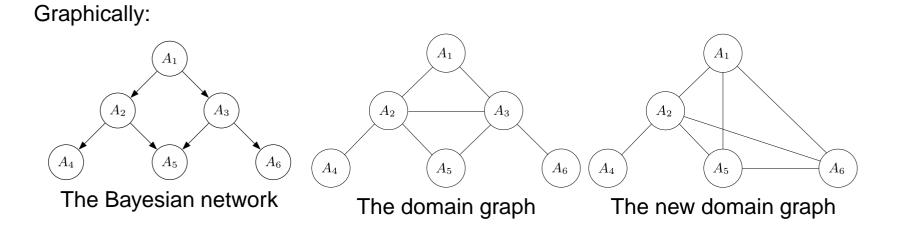
- For all nodes X: Connect pairwise all parents of X with undirected links.
- Replace all original directed links by undirected ones.



Eliminating a variable

Suppose that when calculating $P(A_4)$ we start off by eliminating A_3 :

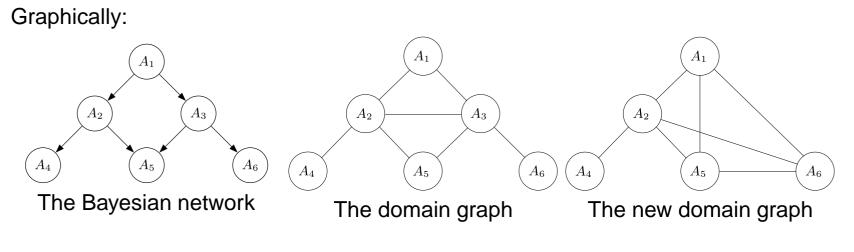
$$\phi'(A_1, A_2, A_5, A_6) = \sum_{A_3} \phi_3(A_3, A_1) \phi_4(A_4, A_2) \phi_5(A_5, A_2, A_3).$$



Eliminating a variable

Suppose that when calculating $P(A_4)$ we start off by eliminating A_3 :

$$\phi'(A_1, A_2, A_5, A_6) = \sum_{A_3} \phi_3(A_3, A_1) \phi_4(A_4, A_2) \phi_5(A_5, A_2, A_3).$$



Perfect elimination sequences

If all variables can be eliminated without introducing fill-in edges, then the elimination sequence is called perfect. An example could be $A_5, A_6, A_3, A_1, A_2, A_4$.

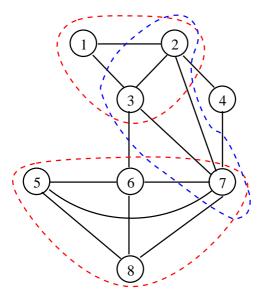
Perfect elimination sequences

Perfect elimination sequences

All perfect elimination sequences produce the same domain set, namely the set of cliques of the domain graph.

Clique

A set of nodes is complete if all nodes are pairwise linked. A complete set is a clique if it is not a subset of another complete set.

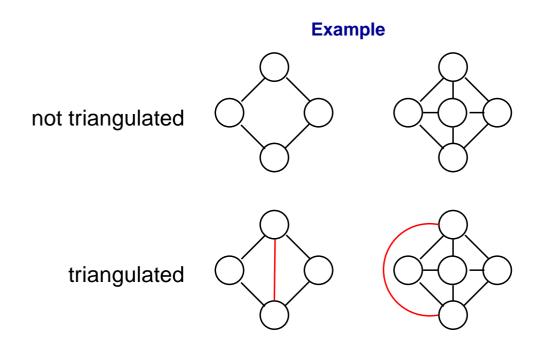


Property

Any perfect elimination sequence ending with A is optimal w.r.t. calculating P(A).

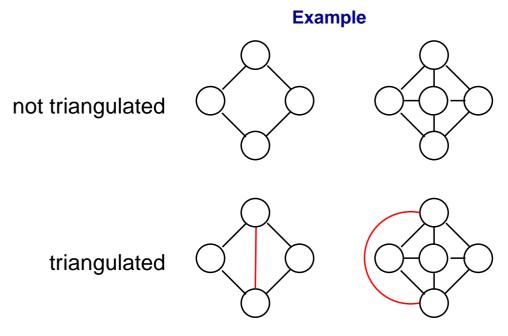
Definition

An undirected graph with a perfect elimination sequence is called a triangulated graph.



Definition

An undirected graph with a perfect elimination sequence is called a triangulated graph.

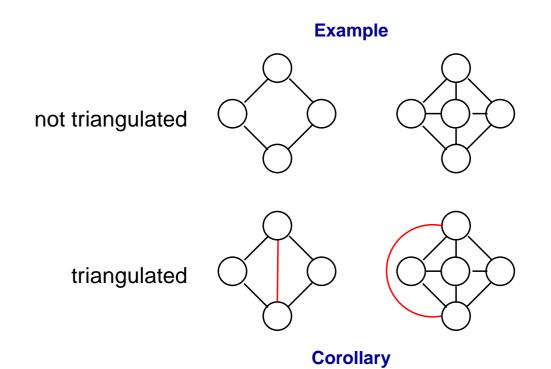


Corollary

A graph is triangulated iff all nodes can successively be eliminated without introducing fill-in edges.

Definition

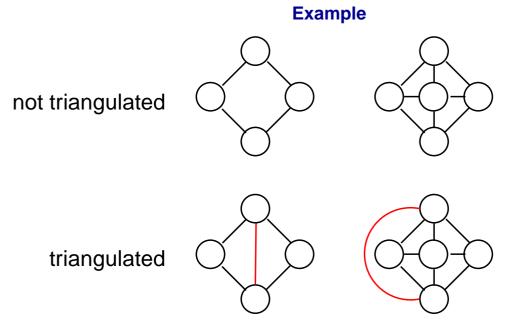
An undirected graph with a perfect elimination sequence is called a triangulated graph.



A graph is triangulated iff there does not exist a cycle of length ≥ 4 that is not cut by a cord.

Definition

An undirected graph with a perfect elimination sequence is called a triangulated graph.

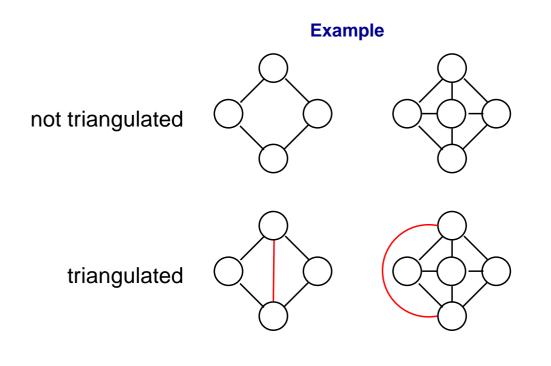


Corollary

In a triangulated graph, each variable A has a perfect elimination sequence ending with A.

Definition

An undirected graph with a perfect elimination sequence is called a triangulated graph.



Assumption

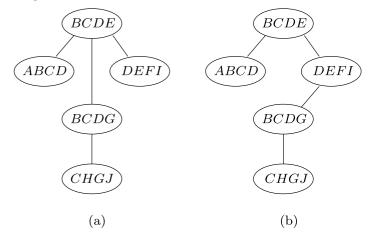
For now we shall assume that the domain graph is triangulated!

Join Tree (Junction Tree)

Let \mathcal{G} be the set of cliques from an undirected graph, and let the cliques of \mathcal{G} be organized in a tree T. Then T is a join tree if

a variable V that is contained in two nodes C, C' also is contained in every node on the (unique) path connecting C and C'.

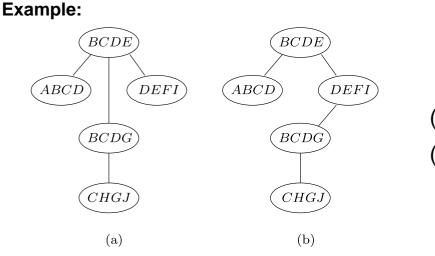
Example:

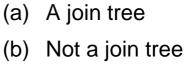


Join Tree (Junction Tree)

Let \mathcal{G} be the set of cliques from an undirected graph, and let the cliques of \mathcal{G} be organized in a tree T. Then T is a join tree if

a variable V that is contained in two nodes C, C' also is contained in every node on the (unique) path connecting C and C'.

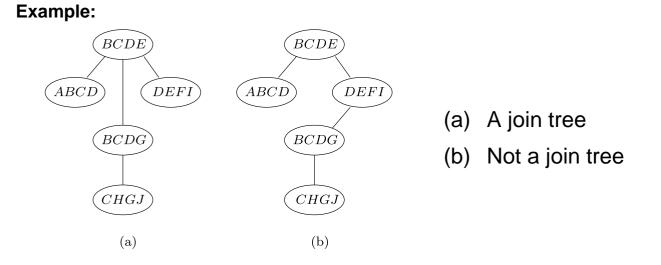




Join Tree (Junction Tree)

Let \mathcal{G} be the set of cliques from an undirected graph, and let the cliques of \mathcal{G} be organized in a tree T. Then T is a join tree if

a variable V that is contained in two nodes C, C' also is contained in every node on the (unique) path connecting C and C'.



Theorem: An undirected graph G is triangulated if and only if the cliques of G can be organized in a join tree.

From undirected graph to join graph

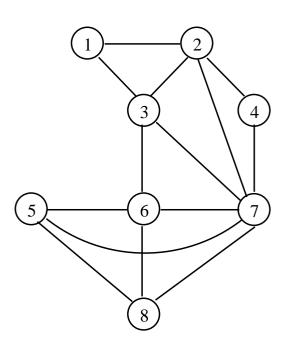
Define undirected graph $(\mathcal{C}, \mathcal{E}^*)$:

C: Set of cliques in triangulated moral graph

$$\mathcal{E}^*: \{ (\mathbf{C}_1, \mathbf{C}_2) \mid \mathbf{C}_1 \cap \mathbf{C}_2 \neq \emptyset \}$$

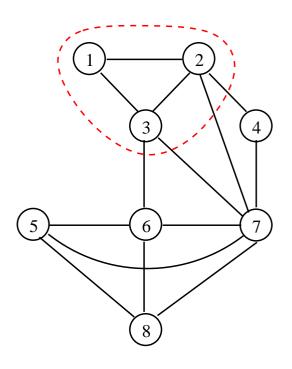
From undirected graph to join graph

- $\mathcal{C}:\quad \text{Set of cliques in triangulated moral graph}$
- $\mathcal{E}^*: \quad \{(\mathbf{C}_1, \mathbf{C}_2) \mid \mathbf{C}_1 \cap \mathbf{C}_2 \neq \emptyset\}$



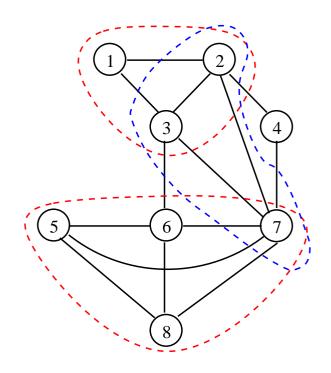
From undirected graph to join graph

- \mathcal{C} : Set of cliques in triangulated moral graph
- $\mathcal{E}^*: \{ (\mathbf{C}_1, \mathbf{C}_2) \mid \mathbf{C}_1 \cap \mathbf{C}_2 \neq \emptyset \}$



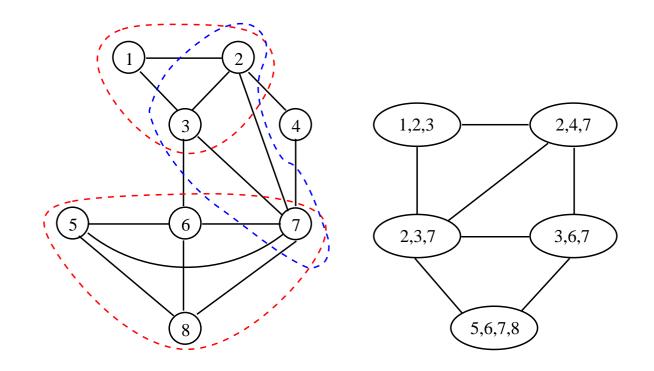
From undirected graph to join graph

- C: Set of cliques in triangulated moral graph
- $\mathcal{E}^*: \{ (\mathbf{C}_1, \mathbf{C}_2) \mid \mathbf{C}_1 \cap \mathbf{C}_2 \neq \emptyset \}$



From undirected graph to join graph

- \mathcal{C} : Set of cliques in triangulated moral graph
- $\mathcal{E}^*: \{ (\mathbf{C}_1, \mathbf{C}_2) \mid \mathbf{C}_1 \cap \mathbf{C}_2 \neq \emptyset \}$

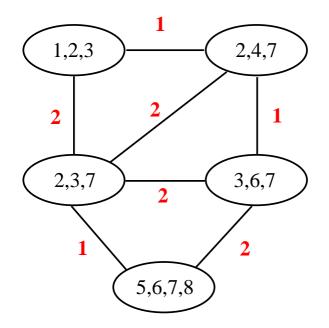


From join graph to join tree

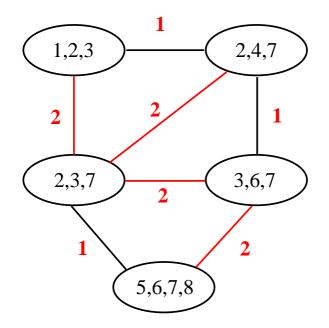
From join graph to join tree



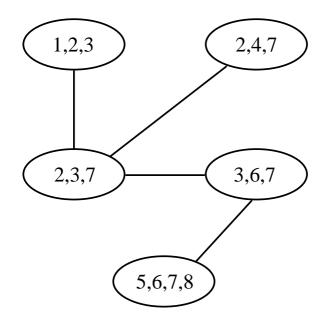
From join graph to join tree

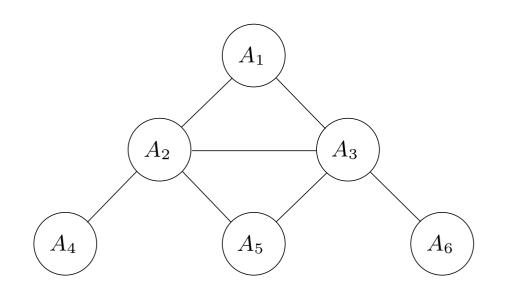


From join graph to join tree

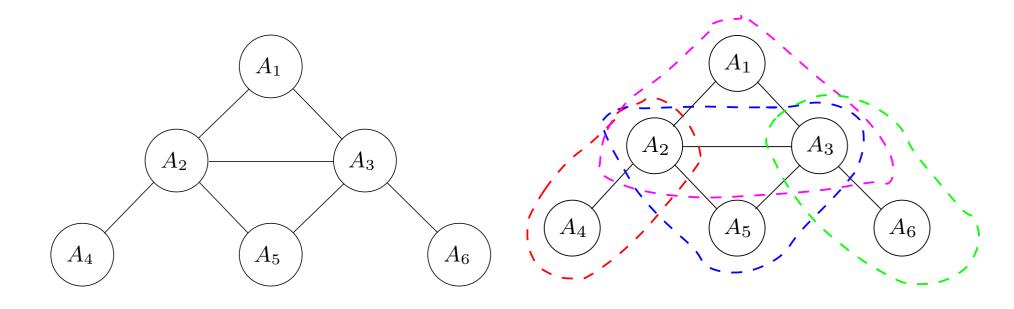


From join graph to join tree

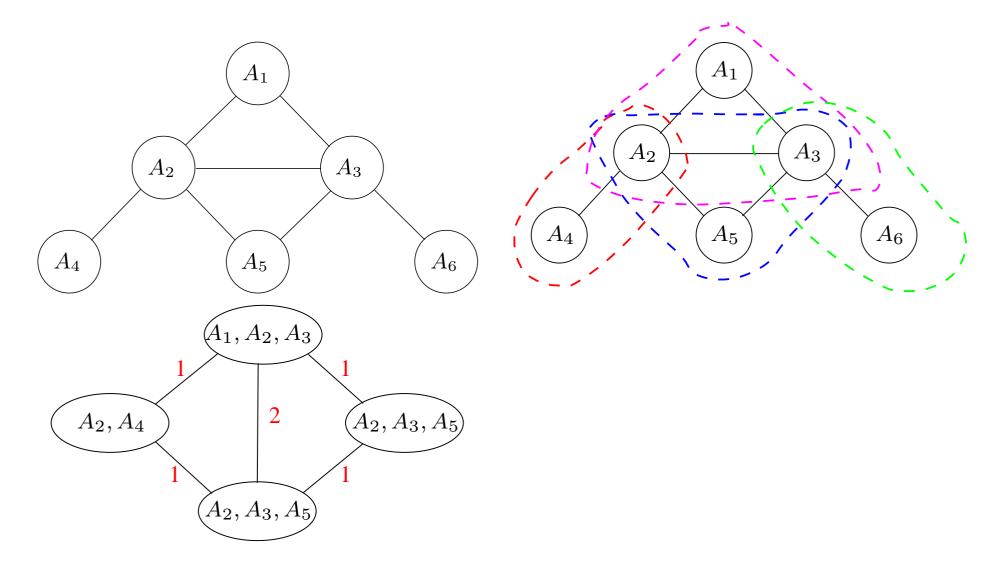




Another example

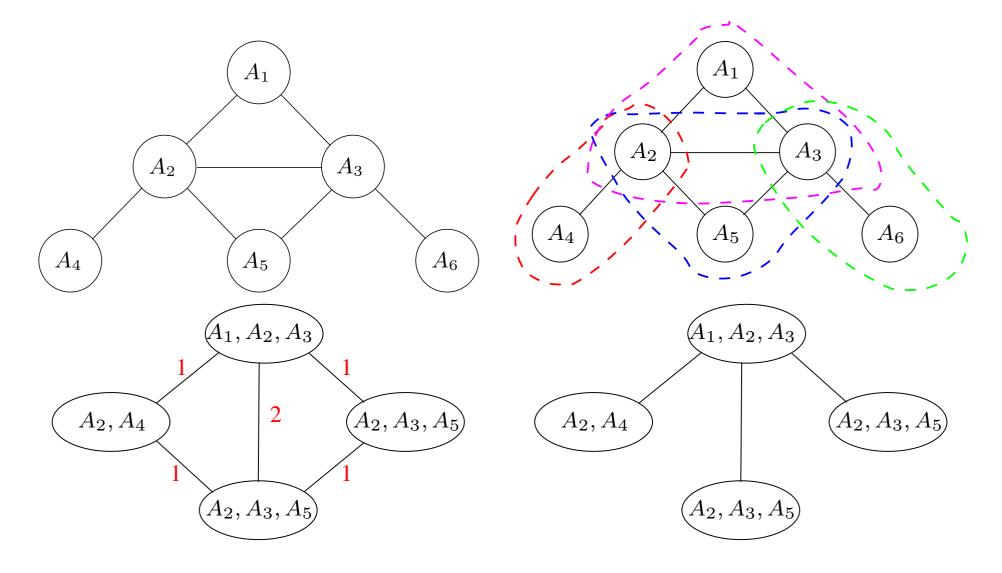


Another example



Join tree construction

Another example



Junction tree construction

Correctness

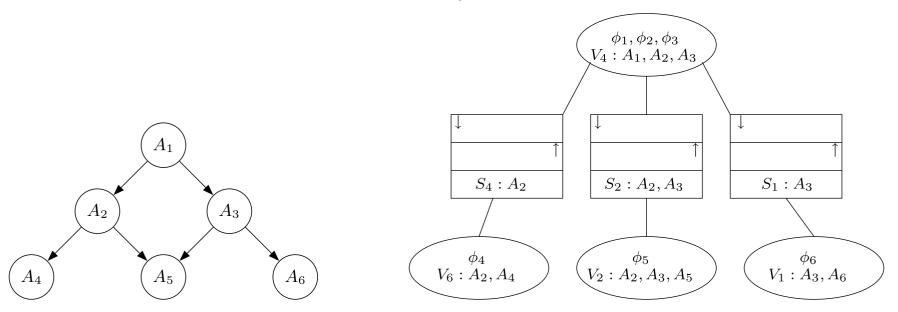
Let $(\mathbf{V}, \rightarrow)$ be a triangulated graph, $(\mathcal{C}, \mathcal{E}^*)$. Every maximal spanning tree $(\mathcal{C}, \mathcal{E})$ of $(\mathcal{C}, \mathcal{E}^*)$ is a join tree for \mathbf{V} (Jensen, Jensen 1994).

If $(\mathbf{V}, \rightarrow)$ is the triangulated moral graph of a Bayesian network, then there exists for every $V \in \mathbf{V}$ a clique $\mathbf{C} \in C$ with $\{V\} \cup \operatorname{pa}(V) \subseteq \mathbf{C}$.

Initialization

Let T be a join tree for the domain graph G with potentials Φ . A junction tree for G consists of T with the additions:

- each potential ϕ from Φ is assigned to a clique containing dom (ϕ).
- each link has a separator attached.
- each separator contains two mailboxes, one for each direction.

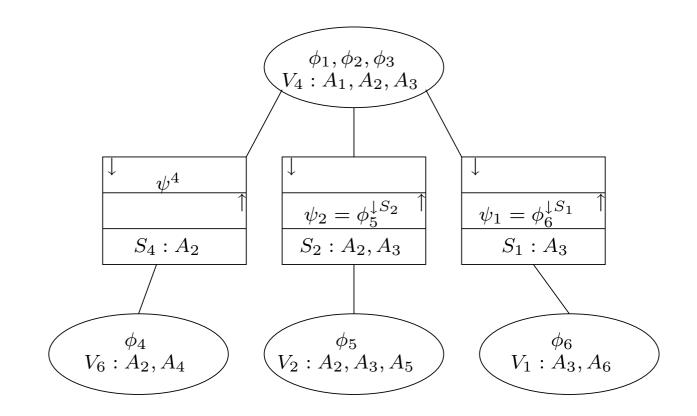


Example

Propagation

To calculate $P(A_4)$ we find a clique (V_6) containing A_4 and send messages to that clique.

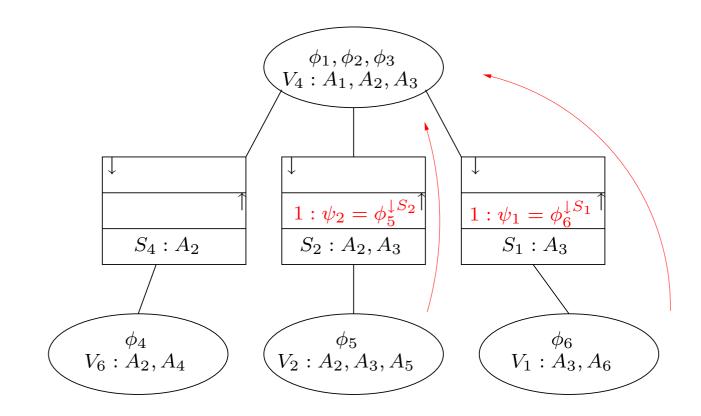
Example



Propagation

To calculate $P(A_4)$ we find a clique (V_6) containing A_4 and send messages to that clique.

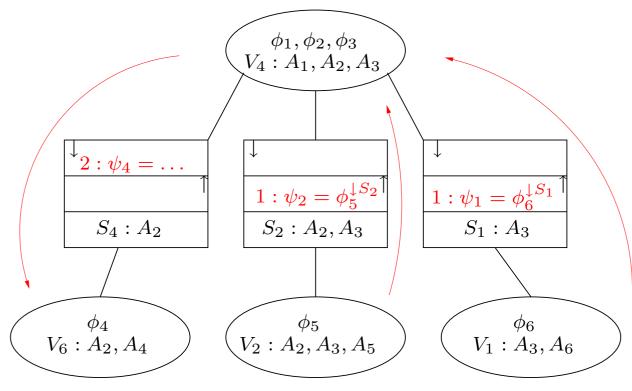
Example



Propagation

To calculate $P(A_4)$ we find a clique (V_6) containing A_4 and send messages to that clique.

Example



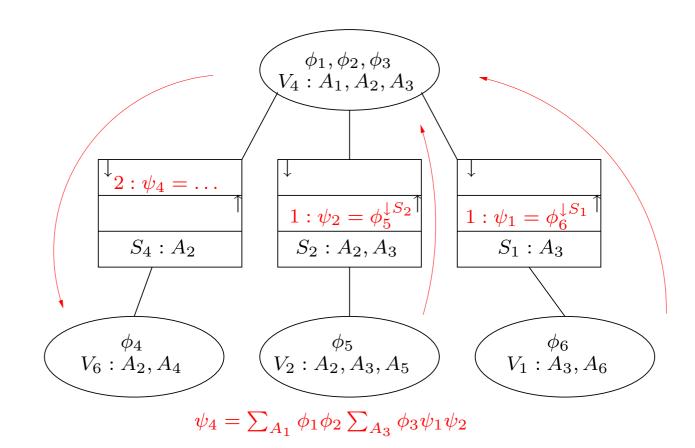
 $\psi_4 = \sum_{A_1} \phi_1 \phi_2 \sum_{A_3} \phi_3 \psi_1 \psi_2$

Now evidence has been collected to V_4 and we get $P(A_4) = \sum_{A_2} \phi_4 \psi_4$.

Propagation

To calculate $P(A_i)$ for any A_i we send messages away from V_6 .

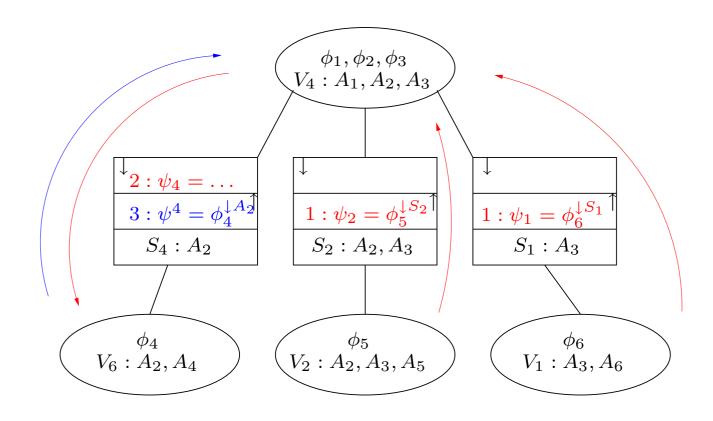
Example continued



Propagation

To calculate $P(A_i)$ for any A_i we send messages away from V_6 .

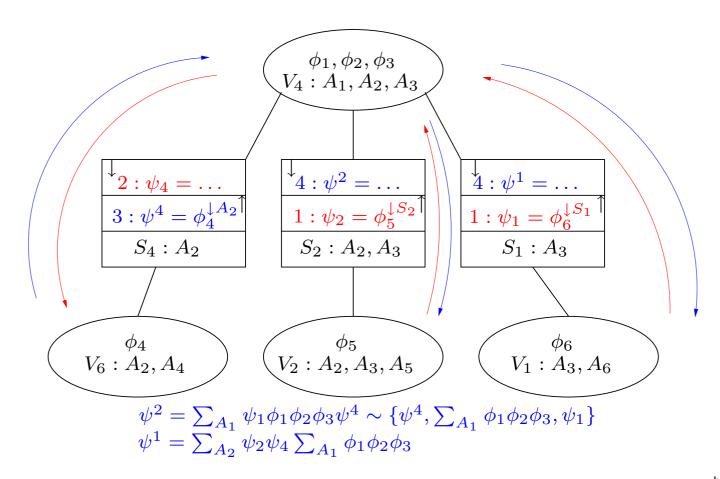
Example continued



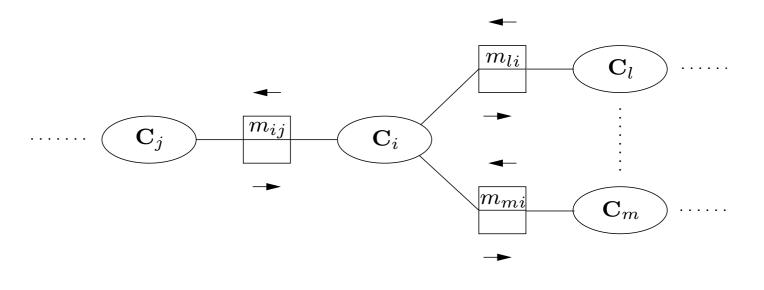
Propagation

To calculate $P(A_i)$ for any A_i we send messages away from V_6 .

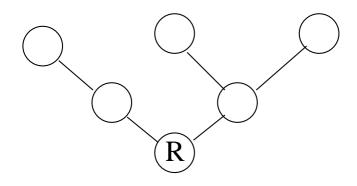
Example continued



In general: Sending a message from \mathbf{C}_i to \mathbf{C}_j



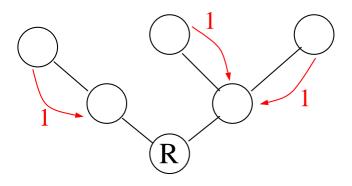
Messages passing in general



Collect and distribute messages

i) Collect messages to a preselected root R

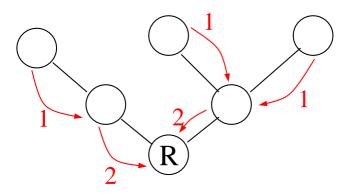
Messages passing in general



Collect and distribute messages

i) Collect messages to a preselected root R

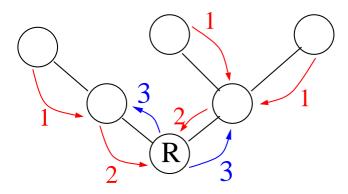
Messages passing in general



Collect and distribute messages

i) Collect messages to a preselected root R

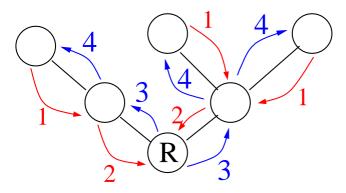
Messages passing in general



Collect and distribute messages

- i) Collect messages to a preselected root R
- ii) Distribute messages away from the root R

Messages passing in general



Collect and distribute messages

- i) Collect messages to a preselected root R
- ii) Distribute messages away from the root R

Theorem

Let the junction tree T represent the Bayesian network BN over the universe U and with evidence e. Assume that T is full.

1. Let *V* be a clique with set of potentials Φ_V , and let S_1, \ldots, S_k be *V*'s neighboring separators and with *V*-directed messages Ψ_1, \ldots, Ψ_k . Then

$$P(V,e) = \prod \Phi_V \prod \Psi_1 \cdot \ldots \cdot \prod \Psi_k.$$

2. Let S be a separator with the sets Ψ_S and Ψ^S in the mailboxes. Then

$$P(S,e) = \prod \Psi_S \prod \Psi^S.$$

Theorem

Let the junction tree T represent the Bayesian network BN over the universe U and with evidence e. Assume that T is full.

1. Let *V* be a clique with set of potentials Φ_V , and let S_1, \ldots, S_k be *V*'s neighboring separators and with *V*-directed messages Ψ_1, \ldots, Ψ_k . Then

$$P(V,e) = \prod \Phi_V \prod \Psi_1 \cdot \ldots \cdot \prod \Psi_k.$$

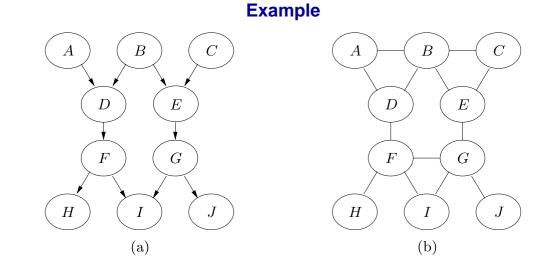
2. Let S be a separator with the sets Ψ_S and Ψ^S in the mailboxes. Then

$$P(S,e) = \prod \Psi_S \prod \Psi^S.$$

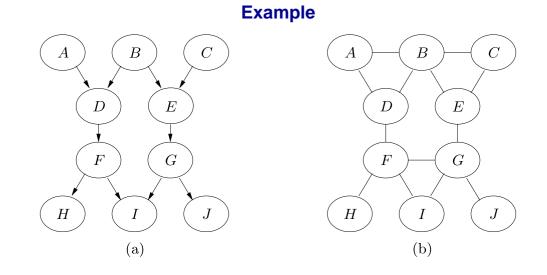
Evidence

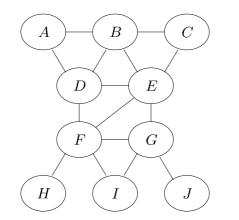
Evidence is inserted by adding corresponding 0/1-potentials to the appropriate cliques.

So far we have assumed that the domain graph is triangulated. If this is not the case, then we embed it in a triangulated graph.

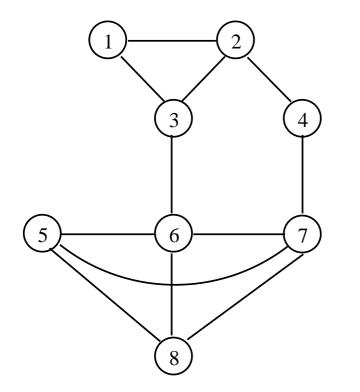


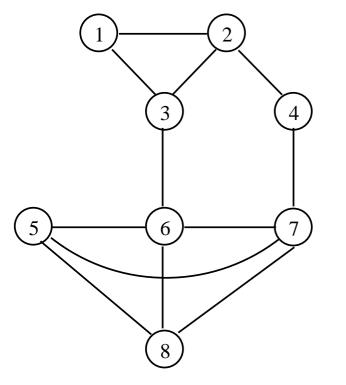
So far we have assumed that the domain graph is triangulated. If this is not the case, then we embed it in a triangulated graph.





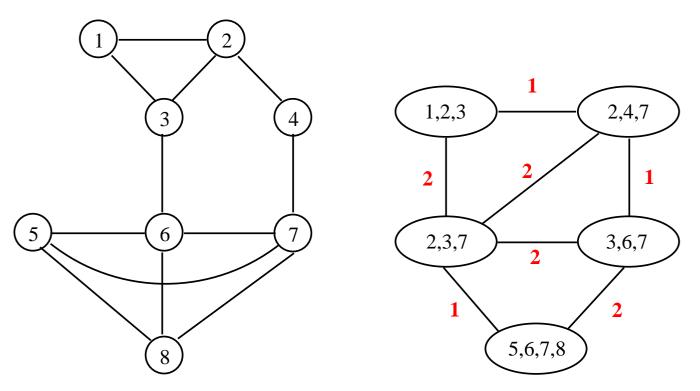
A triangulated graph extending (b)





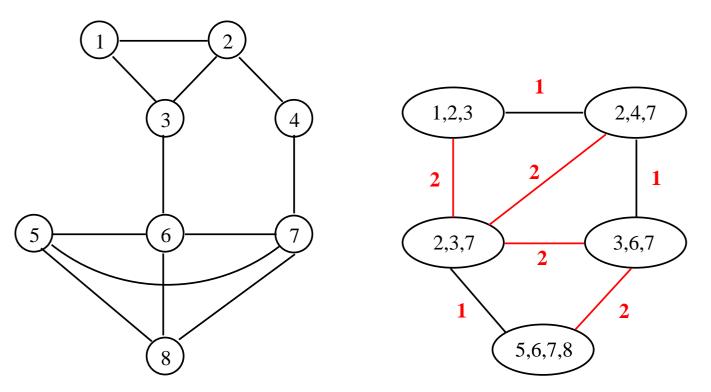
A heuristic

Repeatedly eliminate a simplicial node, and if this is not possible eliminate a node minimizing (fa(X) are noneliminated neighbors of X):



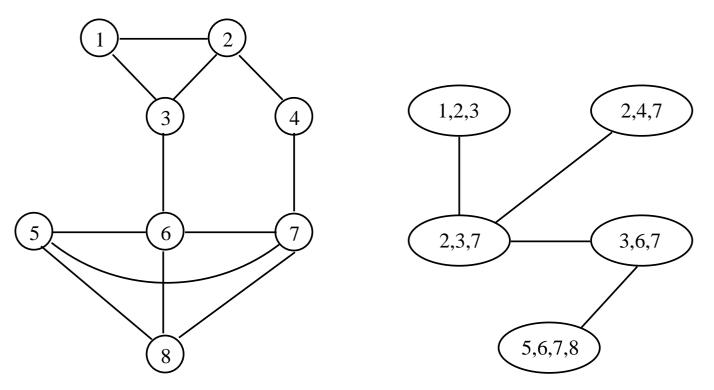
A heuristic

Repeatedly eliminate a simplicial node, and if this is not possible eliminate a node minimizing (fa(X) are noneliminated neighbors of X):



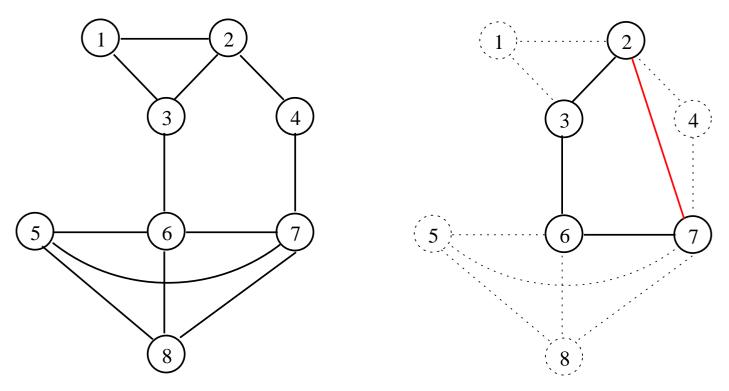
A heuristic

Repeatedly eliminate a simplicial node, and if this is not possible eliminate a node minimizing (fa(X) are noneliminated neighbors of X):



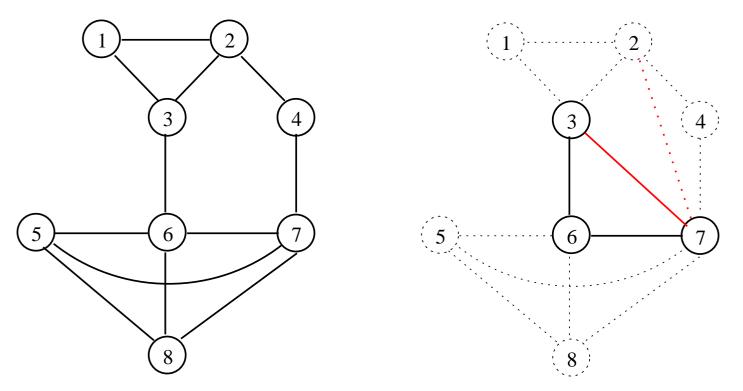
A heuristic

Repeatedly eliminate a simplicial node, and if this is not possible eliminate a node minimizing (fa(X) are noneliminated neighbors of X):



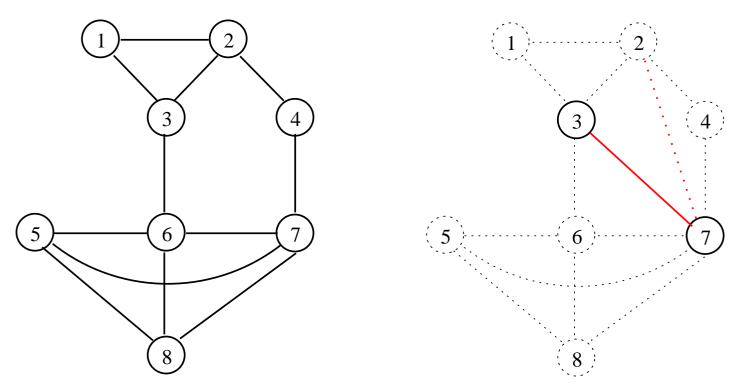
A heuristic

Repeatedly eliminate a simplicial node, and if this is not possible eliminate a node minimizing (fa(X) are noneliminated neighbors of X):



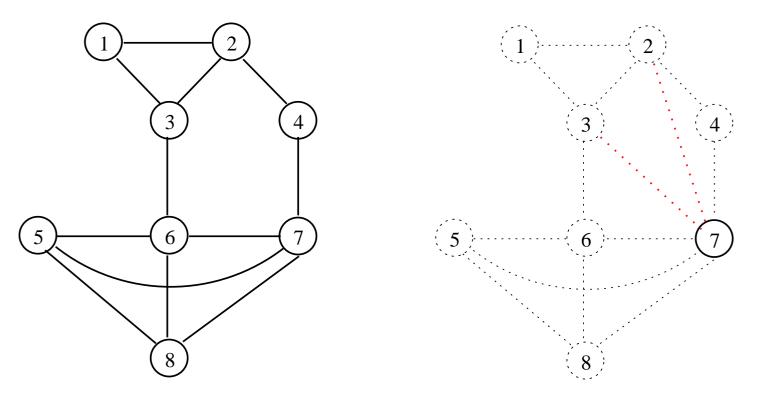
A heuristic

Repeatedly eliminate a simplicial node, and if this is not possible eliminate a node minimizing (fa(X) are noneliminated neighbors of X):



A heuristic

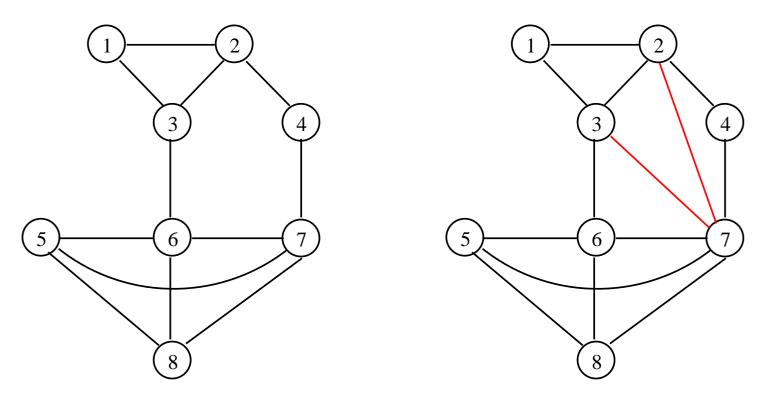
Repeatedly eliminate a simplicial node, and if this is not possible eliminate a node minimizing (fa(X) are noneliminated neighbors of X):



A heuristic

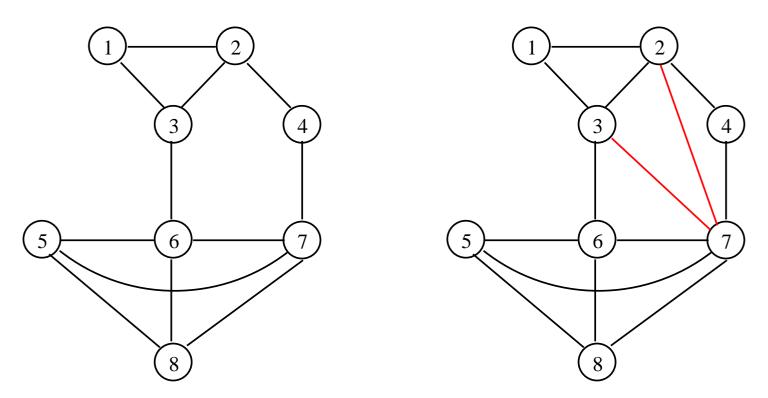
Repeatedly eliminate a simplicial node, and if this is not possible eliminate a node minimizing (fa(X) are noneliminated neighbors of X):

|fa(X)| (fill-in-size).



A heuristic

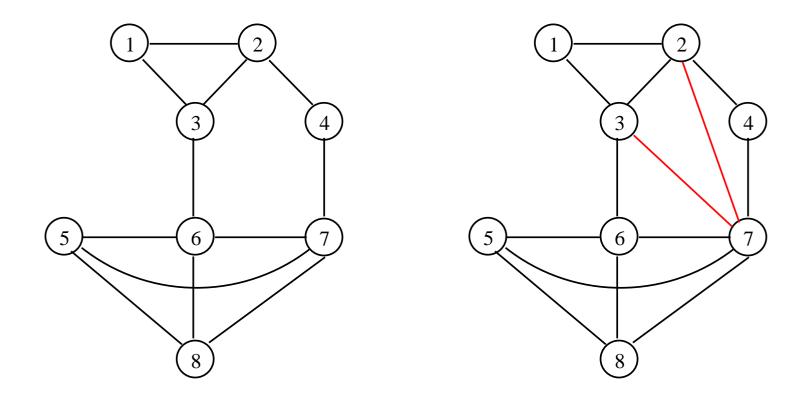
Repeatedly eliminate a simplicial node, and if this is not possible eliminate a node minimizing (fa(X) are noneliminated neighbors of X):



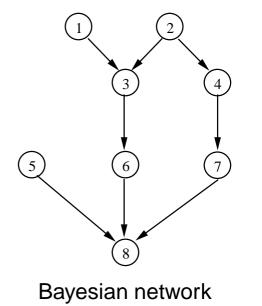
A heuristic

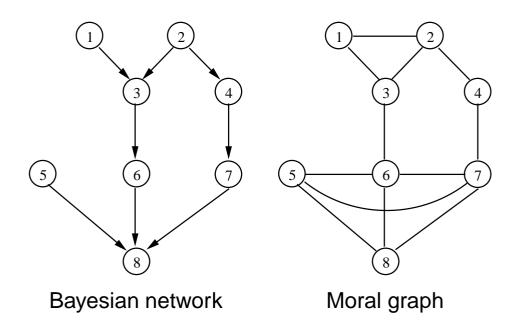
Repeatedly eliminate a simplicial node, and if this is not possible eliminate a node minimizing (fa(X) are noneliminated neighbors of X):

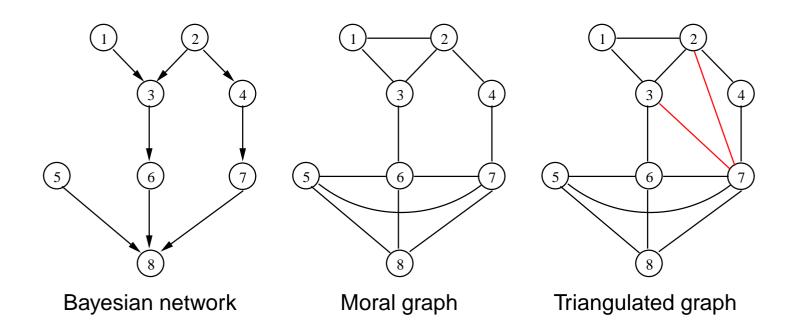
- $\blacktriangleright |fa(X)| (fill-in-size).$
- $\blacktriangleright | \operatorname{sp}(\operatorname{fa}(X)) | \text{ (clique-size).}$
- $\sum_{\{Y,Z\}:\{Y,Z\}\in nb(X)\wedge Z\not\in nb(Y)} |sp(\{Y,Z\})| \text{ (fill-in-weight)}$

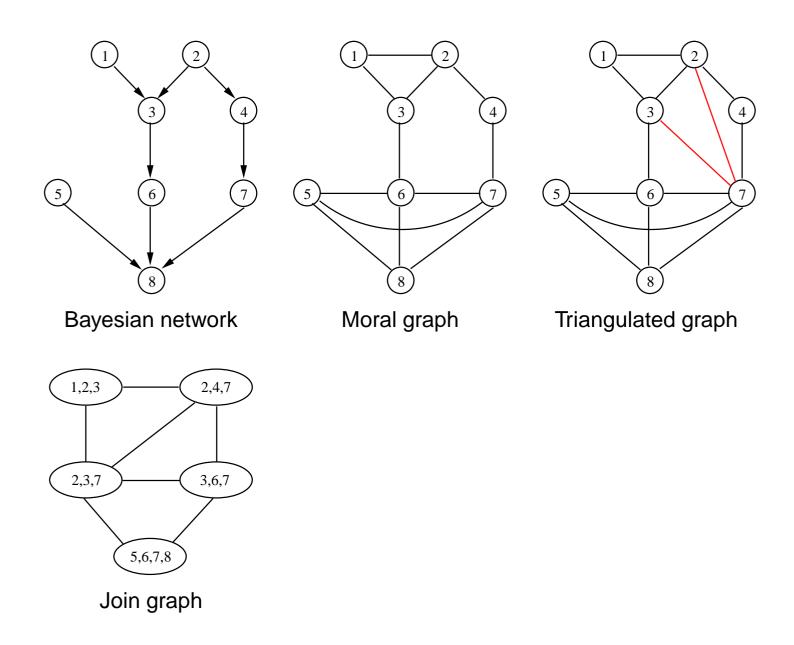


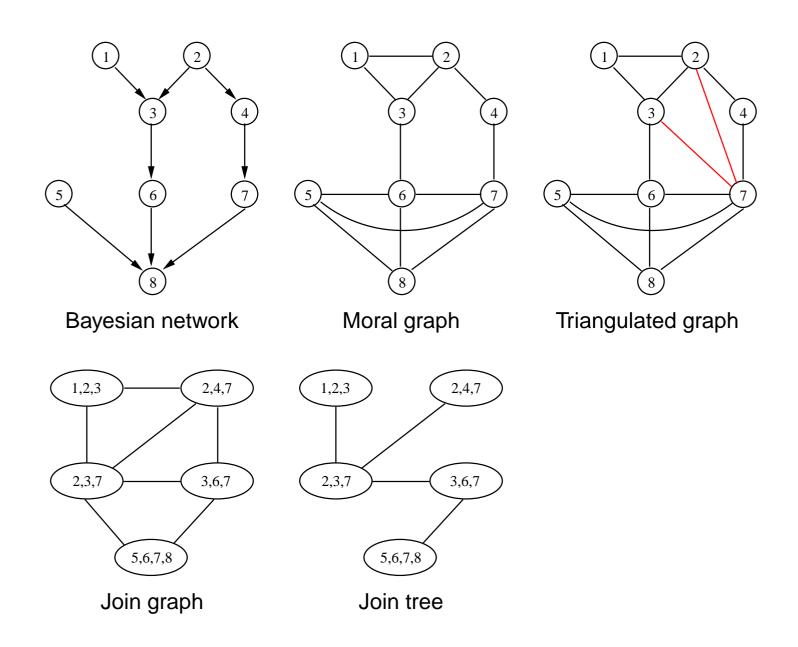
Usually there are many possible triangulations and finding the best one is NP-hard!

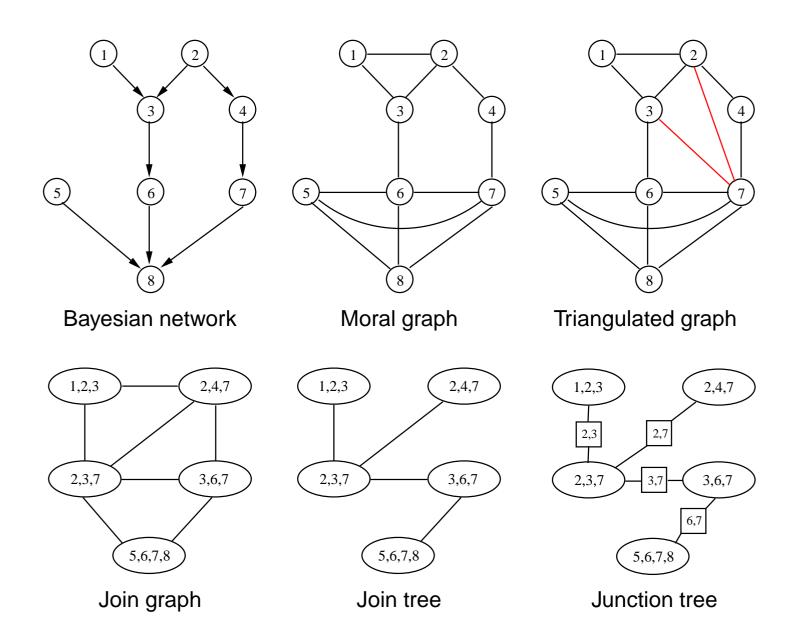












Summary

Given: Bayesian network BN for $P(\mathbf{V})$

Summary

Given: Bayesian network BN for $P(\mathbf{V})$

 \Downarrow Moralize

Domain graph G for BN (also called the moral graph)

Summary

Given: Bayesian network BN for $P(\mathbf{V})$

 \Downarrow Moralize

Domain graph G for BN (also called the moral graph)

 \Downarrow Triangulate

Triangulated graph for G

Summary

Given: Bayesian network BN for $P(\mathbf{V})$

 \Downarrow Moralize

Domain graph G for BN (also called the moral graph)

 \Downarrow Triangulate

Triangulated graph for G

 $\Downarrow \mathsf{Find} \mathsf{ cliques}$

Join graph

Summary

Given: Bayesian network BN for $P(\mathbf{V})$

 \Downarrow Moralize

Domain graph G for BN (also called the moral graph)

 \Downarrow Triangulate

Triangulated graph for G

 $\Downarrow \mathsf{Find} \mathsf{ cliques}$

Join graph

 \Downarrow Find maximal spanning tree

Join tree

Summary

Given: Bayesian network BN for $P(\mathbf{V})$

 \Downarrow Moralize

Domain graph G for BN (also called the moral graph)

 $\Downarrow \text{Triangulate}$

Triangulated graph for G

 $\Downarrow \mathsf{Find} \mathsf{ cliques}$

Join graph

 \Downarrow Find maximal spanning tree

Join tree

 \Downarrow

Perform belief updating by message passing.