
Optimal Junction TreesFinn V. Jensen Frank JensenDepartment of Mathematics and Computer ScienceAalborg UniversityFredrik Bajers Vej 7E, DK-9220 Aalborg �st, DenmarkE-mail: fvj@iesd.auc.dk, fj@iesd.auc.dkAbstractThe paper deals with optimality issues in con-nection with updating beliefs in networks. Weaddress two processes: triangulation and con-struction of junction trees. In the �rst part,we give a simple algorithm for constructingan optimal junction tree from a triangulatednetwork. In the second part, we argue thatany exact method based on local calculationsmust either be less e�cient than the junctiontree method, or it has an optimality problemequivalent to that of triangulation.1 INTRODUCTIONThe junction tree propagation method (Jensen et al.,1990; Lauritzen and Spiegelhalter, 1988) is designedfor propagation in Markov networks :� an undirected graph with discrete variables asnodes;� for each clique U in the graph there is a poten-tial �U, which is a non-vanishing function fromthe set of con�gurations of U to the set of non-negative reals.The compilation part of the method is to� triangulate the graph (i.e., add extra links suchthat every cycle of length greater than three hasa chord);� form a potential �U for each clique U of the tri-angulated graph;� construct a junction tree over the cliques.A junction tree over the cliques is characterized by theso-called junction tree property : For each pair U;Vof cliques with intersection S, all cliques on the pathbetween U and V contain S.The propagation part of the method consists of

� giving all links in the junction tree a label con-sisting of the intersection of the adjacent nodes;these labels are called separators (see Figure 1a);� attaching a potential to all separators (initiallythe neutral potential consisting of ones);� letting the nodes communicate via the separa-tors: a message from U to V with separator Shas the form that �U is marginalized down to S,resulting in � 0S; � 0S is placed on the separator and� 0(S)=�(S) is multiplied on �V (see Figure 1b).
ABC

AB

ABD

A

A

AH

AEF

AE A

AEG AI

(a)

U S V

(b)

’(S) ’(S) (S)/

FIGURE 1.(a) A junction tree. (b) Message passing in junctiontrees.It is so, that after a �nite number of message passesbetween neighbours in the junction tree, each po-tential in the junction tree holds the (possibly non-normalized) marginal of the joint probability distribu-tion for the entire set of variables. In fact, the messagepassing can be organized so that it is su�cient withexactly one pass in each direction of the links in thejunction tree. Therefore, in complexity considerationsfor propagation in junction trees, one can associate alocal measure C(U;V) to links (U;V), where C(U;V)indicates time/space consumption for the two passes.To appear in Proceedings of the Tenth Conference on Uncertainty in Arti�cial Intelligence. Seattle, Washington, July 29{31, 1994.



The compilation is not deterministic. Markov net-works may have several di�erent triangulations yield-ing di�erent sets of cliques, and a triangulated networkmay have several di�erent junction trees. We thereforewould like to have algorithms yielding optimal trian-gulations and optimal junction trees with respect tocomplexity. However, the optimality problem for tri-angulations is NP-complete (Arnborg et al., 1987).In the �rst part of the paper, we address the optimal-ity problem for junction trees given the triangulatedgraph, and we present a simple algorithm which isquadratic in the number of cliques.In the last section, we address the triangulation pro-cess and ask the question whether it may be possibleto come up with a propagation method which does notcontain an NP-hard optimality problem. The answeris discouraging. We show that any local calculationmethod must involve a hidden triangulation, and weuse this to conclude that the method is either less ef-�cient than the junction tree method, or it has anNP-hard optimality problem.2 JUNCTION TREES ANDMAXIMAL SPANNING TREESThroughout the remainder of the paper, we consider atriangulated connected graphG with clique set C. Thecliques of G are denoted by the letters U, V, W, U 0,etc. We shall not distinguish between a clique andits set of variables. So we talk of the intersection ofcliques meaning the set of variables common to thecliques. Intersections are denoted by letters R, S, R 0,etc.De�nition 1 The junction graph for G has C as nodes,and for each pair U;V of cliques with nonempty inter-section R there is a link with label R. Each link has aweight which is the number of variables in the label.Theorem 1 A spanning tree for the junction graphof G is a junction tree if and only if it is a spanningtree of maximal weight.Theorem 1 has been proved independently by Shibata(1988) and Jensen (1988). Here we will give a proofmuch simpler than the original ones. Before giving theproof, we shall recall two algorithms for the construc-tion of maximal spanning trees.Algorithm 1 (Prim)(1) Put N = fUg, where U is an arbitrary node.(2) Choose successively a link (W;V) of maximalweight such that W 2 N and V =2 N, and add Vto N.
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FIGURE 2. Paths in T and T 0.Prim's algorithm constructs a sequence T0 � � � � � Tnof maximal spanning trees for the subgraph deter-mined by N.Algorithm 2 (Kruskal)Choose successively a link of maximal weight not pro-ducing a cycle.Kruskal's algorithmworks with a forest of partial max-imal weight spanning trees. Whenever a link is cho-sen, two partial trees are connected into a new partialspanning tree of maximal weight.Both algorithms result in maximal weight spanningtrees, and each maximal weight spanning tree canbe constructed through any of the two algorithms.[Proofs can be found in many textbooks on graphalgorithms, e.g., (Goudran and Minoux, 1984) and(McHugh, 1990)].Proof of Theorem 1: Let T be a spanning tree ofmaximal weight. Let it be constructed by Prim's al-gorithm such that T1 � � � � � Tn = T is a sequence ofpartial maximal weight spanning trees.Assume that T is not a junction tree. Then, at somestage m, we have that Tm can be extended to a junc-tion tree T 0 while Tm+1 cannot. Let (U;V) with la-bel S be the link chosen at this stage; V 2 Tm+1 (seeFigure 2).Since Tm+1 cannot be extended to a junction tree, thelink (U;V) is not a link in T 0. So, there is a path in T 0between U and V not containing (U;V). This pathmust contain a link (U 0; V 0) with label S 0 such thatU 0 2 Tm and V 0 =2 Tm (see Figure 2).Since T 0 is a junction tree, we must have S � S 0, andsince S was chosen through Prim's algorithm at thisstage, we also have jSj � jS 0j. Hence, S = S 0.Now, remove the link (U 0; V 0) from T 0 and add thelink (U;V). The result is a junction tree extendingTm+1, contradicting the assumption that it cannot beextended to a junction tree.Next, let T be any non-maximal spanning tree. Weshall prove that T is not a junction tree. Again, letT1 � � � � � T 0 be a sequence of maximal trees con-2
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i+1FIGURE 3. The thinning task at stage i + 1 in Kruskal's algorithm.structed through Prim's algorithm. Let the construc-tion be so that a link from T is chosen whenever possi-ble. Let m be the �rst stage where this is not possible,and let (U;V) with separator S be the link actuallychosen (U 2 Tm, V =2 Tm). In T there is a path be-tween U and V. As in the �rst part of the proof, wehave that this path contains a link (U 0; V 0) with la-bel S 0 such that U 0 2 Tm and V 0 =2 Tm (see Figure 2).Since (U 0; V 0) could not be chosen, we have jS 0j < jSj,and therefore S contains variables not in S 0. Hence, Tdoes not satisfy the junction tree condition.3 OPTIMAL JUNCTION TREESWhenever the junction graph has several spanningtrees of maximal weight, there are accordingly severaljunction trees. Assume that there is a real-valued mea-sure on junction trees yielding a priority among them,and assume that this measure can be decomposed toa local measure C(U;V) attached to the links. Wecall the measure a cost. We may also assume thatthe entire measure is strictly increasing in the localmeasures, and that an optimal junction tree is one ofminimal cost.Let us take a closer look at the construction of junctiontrees through Kruskal's algorithm. Let w1, : : : , wn bethe di�erent weights of G in decreasing order. The al-gorithm can be considered as running through n stagescharacterized by the weight of the links chosen. At theend of stage i, all links possible of weight w1, : : : , wihave been chosen, and a forest Ti1, : : : , Tiki of partialmaximal weight spanning trees has been constructed.Now, the task at stage i+1 can be considered in the fol-lowing way. Add all links of weight wi+1 to the forest,and break the cycles by removing links of weightwi+1.Any thinning will result in a forest of partial spanning

trees of maximal weight. Note that any thinning at agiven stage will result in the same connected compo-nents, and therefore the thinning chosen has no impacton the next stage. Hence, if we in the constructionhave a secondary priority (cost, say), we can performthe thinning by using Kruskal's algorithm accordingto cost. In this way we will end up with a maximalweight spanning tree of minimal cost (see Figure 3).We conclude these considerations withTheorem 2 Any minimal cost junction tree can beconstructed by successively choosing a link of max-imal weight not introducing cycles, and if severallinks may be chosen then a link of minimal cost isselected.A proof of Theorem 2 is an induction proof over thestages. The induction hypothesis is that at the endof each stage, the forest consists of partial maximaldistance junction trees.Remark 1 An analoguous algorithm based on Prim'salgorithm will also construct minimal cost junctiontrees.Corollary 1 All junction trees over the same triangu-lated graph have the same separators (also countingmultiplicity).Proof: Consider stage i+1 (Figure 3). A cycle can bebroken by removing any link of weight wi+1. If (U;V)with separator S is removed, then all separators in theremaining paths between U and V must contain S.This means that any separator of weightwi+1 on thesepaths must equal S. By thinning we therefore removethe same separators.3
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(b)FIGURE 4.(a) Contraction of the junction tree from Figure 1.(b) An Almond tree.4 ALMOND TREESAlmond and Kong (1993) suggest another type of junc-tion tree. Compared to the junction trees in (Jensenet al., 1990), they give some reduction in computa-tional complexity.Observation 1 If n links have the same separator, thecommunication scheme can be contracted (Figure 4a).In junction trees, each separator holds exactly one po-tential table where the marginal last communicatedis stored. In contracted junction trees, a separatorwith n neighbours must hold at least n - 1 potentialtables to store marginals communicated from neigh-bours. This means that there is no saving in space.There is, however, a saving in time, since a number ofmarginalizations are avoided.Observation 2 If a separator is a subset of another sep-arator, they can be linked (Figure 4b).The type of calculations are the same for links betweenseparators as for links between separators and cliques.Due to the corollary, we know for each separator S,the number of supersets to which it shall be linked,and for each link (S; S 0), we can associate a local costC(S; S 0).Junction trees simpli�ed through these two observa-tions we call Almond trees. The construction of anAlmond tree may go as follows:� From the triangulated graph, the set of cliquesand the set of separators (including multiplicity)is established. This can be done through elim-ination in the triangulated graph, but it is notimportant for our considerations.

� For each separator, establish links to all cliquesand separators containing it.� For each separator (with multiplicity n), choosen+1 links to supersets without introducing cycles.Theorem 3 Any minimal cost Almond tree can beconstructed by successively choosing links for sepa-rators of maximal weight, and if several links maybe chosen, take one of minimal complexity.A proof of Theorem 3 is an induction proof along thesame line as a proof of Theorem 2.5 THE NECESSITY OF TRIANGULATIONIn the former sections we gave an e�cient algorithmfor constructing optimal junction trees given the tri-angulated graph. Thereby all steps from DAG to junc-tion tree is covered by e�cient algorithms yielding anoptimal output|except for the triangulation. Sincethis problem is NP-complete, we cannot hope for ane�cient algorithm yielding an optimal triangulation.It appears that a one-step look-ahead heuristic pro-vides the best triangulations. An alternative propaga-tion scheme is conditioning (Pearl, 1988). The NP-complete part of conditioning is the determination ofa cut set for the DAG, and Becker and Geiger (1994)have given an algorithm which guarantees a cut setspace no larger than the square of the space for anoptimal cut set. Other schemes exist, like, e.g., arc-reversal (Shachter, 1990); however, as has been shownby Shachter et al. (1991), all known methods do in factcontain a hidden triangulation.Since belief updating in Bayesian networks is NP-hard(Cooper, 1990), there is not much hope of �nding ascheme avoiding an NP-hard step. However, Cooper'sresult does not yield that any scheme will contain sucha step. Cooper showed that through belief updat-ing, the satis�ability problem for propositional calcu-lus can be solved, but it may still be so that a searchfor an optimal structure for belief updating is poly-nomially solvable. Note namely that the space of thecliques are exponential in their presentation.Also, new schemes are proposed (Zhang and Poole,1992) which may seem as if they avoid the triangula-tion problem. We will in this section argue that anyscheme for belief updating|meeting certain require-ments|will contain a hidden triangulation. Then, ifthe complexity ordering of the hidden triangulationsfollows the ordering in the original scheme, we can con-clude that if the scheme has a polynomially solvableoptimality problem, then the junction tree method ei-ther provides more e�cient solutions or P = NP.4



The considerations to come are somewhat specula-tive and at places they need further precision. Hence,we call the results `statements' rather than theorems.However, a reader looking for alternative propagationmethods can use them as guidelines preventing inves-tigations of several alternatives.Speci�cationsU = fA; : : : ; Bg is a universe consisting of a �nite setof discrete variables. The joint probability P(U) is adistribution over the con�gurations XU = A�� � ��B.A local representation of P(U) consists of a setfP(U1); : : : ; P(Un)g, where U1, : : : , Un is a coveringof U, and P(Ui) is the marginal distribution of Ui.A local representation can be visualized by a graph Gwith the variables as nodes and with a link betweentwo variables if there is a Ui containing both; G iscalled the representing graph.The propagation task can be formulated as follows.Let P 0(Ui) be substituted for P(Ui); if P 0(U) = P(U)�P 0(Ui)=P(Ui) is well-de�ned, then calculate the newmarginals P 0(U1), : : : , P 0(Un).By a scene for a propagation task, we understand auniverse U together with a covering U1, : : : , Un suchthat the covering equals the cliques in the representinggraphs. An instance of a propagation task is a pair(G;P), where G is an undirected graph, and P is a setof marginals of a joint distribution P(U) to the cliquesof G.Let U be a universe. By a local method on U, we un-derstand an algorithm working only on subsets of U.More precisely: The algorithm consists of a controlstructure and a �xed set Pr1, : : : , Prm of proce-dures such that each Pri only processes informationon Vi � U. We call Vi the scope of Pri. The repre-senting graph G 0 for a local method is de�ned as thegraph with U as nodes, and with links between vari-ables if there is a scope containing them. Notice thatthe cliques of G 0 need not be scopes.We have de�ned a local method such that the controlstructure mainly consists of controlling message pass-ing between procedures. Note that between Pri andPrj only information on Vi \ Vj is worth passing.A general local belief updating method for a scenerepresented by G is a local method solving the propa-gation task for each instance (G;P).We aim at the following:Statement 1 Let G represent a scene, and let a gen-eral local belief updating method be represented bythe graph G 0. Then G 0 contains a triangulationof G.
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DFIGURE 5.A graph representing a general propagation task.First, we shall transform the problem to propositionalcalculus.Lemma 1 Let P(U1), : : : , P(Um) be projections ofthe joint probability table P(U). Let Pos(U) be thetable of possible con�gurations of U:Pos(u) = 
 1 if P(u) > 00 otherwiseDe�ne Pos(Ui) as:Pos(ui) = 
 1 if P(ui) > 00 otherwiseThen Pos(ui) = 1 if and only if ui is a projectionof a possible con�guration.Proof: Since P(Ui) is the marginal of P(U), we havethat P(ui) > 0 if and only if ui is the projection of atleast one con�guration with positive probability.The lemma shows that any scheme for belief updatinghas the calculus of possible con�gurations in proposi-tional calculus as a special case. So, if we can proveStatement 1 for this calculus, we are done.We shall start with an example which is the corner-stone of the proof.Example 1 Let the graph in Figure 5 represent a gen-eral propagation task over the propositional calculus,and let Pos be the potential giving 1 for possible con-�gurations and 0 for impossible ones.Let PrAB, PrAC, PrBD, PrDC be procedures for solv-ing the task (the index indicates the scope, see Fig-ure 6).We shall construct an instance which cannot be solvedby the procedures. For each variable we only use the�rst two states. This means that all other states areimpossible.Initially, we have for i; j � 2Pos(ai; bj) = 1 for all i; jPos(ai; cj) = 1 if and only if i = jPos(bi; dj) = 1 if and only if i = jPos(ci; dj) = 1 for all i; j5
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FIGURE 6.The scopes for the procedures and the communicationchannels.That is, A and C as well as B and D are forced intothe same state, and everything else is possible. Notethat the Pos-relations above are projections of the Pos-relation over the universe:Pos(ai; bj; ck; d`) = 1if and only ifPos(ai; bj) = Pos(ai; ck)= Pos(bj; d`) = Pos(ck; d`) = 1Now, assume we get the information that the con�g-urations (a1; b2) and (a2; b1) are impossible. This isequivalent to replacing the relation Pos(ai; bj) byPos 0(ai; bj) = 1 if and only if i = j (and i; j � 2).Now, the propagation task is to determine Pos 0(A;C),Pos 0(B;D), and Pos 0(C;D) such that these local rela-tions are projections of the unique universal relationPos 0(A;B;C;D), satisfying the relations Pos 0(A;B),Pos(A;C), Pos(B;D), and Pos(C;D).Clearly, Pos 0(ai; bj; ck; d`) = 1 if and only if i = j =k = `, and therefore Pos 0(ck; d`) = 1 if and only ifk = `.The tool for achieving this result is the set PrAB,PrAC, PrBD, and PrCD of procedures. Since PrAB canonly process information on the variablesA and B, andPrAC can only process information on A and C, thenthe only valuable information to communicate be-tween the two procedures is information on A (see Fig-ure 6). That is, between Pr1 and Pr2 with scopes V1and V2, respectively, only information on V1\V2 needto be communicated. The new relation Pos 0(A;B) in-troduces a constraint between the state of A and thestate of B, but since only information on A alone andB alone can be communicated, the constraint cannotbe communicated to PrCD.Note that if a cycle contains more than 4 variables, theconstruction can be extended by clamping the statesof further intermediate variables.

Proof of Statement 1: Assume that G 0 does notcontain a triangulation of G. Then there is a cycle Cin G such that the subgraph of G 0 consisting of thenodes in C is not triangulated. Let C 0 be a chordlesscycle of length greater than three in that subgraph.Let A1, : : : , An be the nodes of C 0.We now can construct an instantiation, which cannotbe propagated correctly: (1) Let a con�guration bepossible if and only if its projection to A1 � � � � �Anis possible. (2) Perform the construction as shown inthe example.By the proof of Statement 1, we see that it can begeneralized to systems with other uncertainty calculilike, e.g., Dempster-Shafer belief functions or fuzzysystems. In fact, the reasoning can be applied to anycalculus having propositional calculus as a special case.An axiomatization of these possible calculi is outsidethe scope of this paper, but the axioms in (Shenoy andShafer, 1990) form a good starting point.Concerning complexity we still have a couple of looseends. Although a general scheme involves a hidden tri-angulation, the computational complexity needs notbe of the same kind as for the junction tree scheme.In the junction tree scheme the complexity is propor-tional to the number of con�gurations in the cliques.Therefore a general local scheme has an equivalentcomputational complexity if it is proportional to thenumber of con�gurations in the scopes. This is thecase if each con�guration has an impact on the mes-sages sent in the algorithm. In this paper we shall notgive su�cient conditions for this to hold.The second loose end has to do with optimality. A gen-eral scheme is, e.g., to work with P(U) only. This cor-responds to working with the complete graph over U.This scheme has a trivial optimality problem, but thejunction tree method can do much better even for sub-optimal triangulations. Therefore we conclude:Statement 2 If a general local propagation schemehas a complexity at least proportional to the num-ber of con�gurations in the scopes, and its opti-mality problem can be solved in polynomial time,then either the junction tree scheme can do betteror P = NP.AcknowledgementsThe work is part of the ODIN-project at Aalborg Uni-versity, and we thank our colleagues in the group forinspiring discussions.The work is partially funded by the Danish ResearchCouncils through the PIFT-programme.6
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