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A small quiz

Which of the following two lotteries would you prefer?:
• Lottery A = [$1mill.],

• Lottery B = 0.1[$5mill.] + 0.89[$1mill.] + 0.01[$0].
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A small quiz

Which of the following two lotteries would you prefer?:
• Lottery A = [$1mill.],

• Lottery B = 0.1[$5mill.] + 0.89[$1mill.] + 0.01[$0].

What about these two?:

• Lottery C = 0.11[$1mill.] + 0.89[$0],

• Lottery D = 0.1[$5mill.] + 0.9[$0].

Is this the rational choice?
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Reverse the directions?

Consider the following model:

Flue Fever Sleepy

The probability distributions P (Sleepy), P (Fever|Sleepy) and P (Flue|Fever) can be
calculated from the model above and used in the model below.

Flue Fever Sleepy

So is there any difference??
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Decisions

Taking the temperature and setting the temperature can be seen as a test decision and an
action decision, respectively.

Flue Fever Sleepy

ActionTest

Impacts from the decisions:

• Tests: Both directions
• Actions: With the direction only.
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Poker again

Consider the poker example again:

OH0

FC

OH1

SC

OH2

BH

MH

Why request this?
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Poker again

Consider the poker example again:

OH0

FC

OH1

SC

OH2

BH

MH

Why request this?

Fold or call?

• Both placed 1$

• She has placed 1$ more
• fold ⇒ she takes the pot
• call ⇒ place 1$ ⇒ best hand takes the pot
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Call or fold?

This decision problem can be represented graphically by extending the BN with a decision
node and a utility node:

OH0

FC

OH1

SC

OH2

BH

MH

U

D

D
fold call

BH
I −1 2

op. −1 −2

draw −1 0

U(BH, D)
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Call or fold?

This decision problem can be represented graphically by extending the BN with a decision
node and a utility node:

OH0

FC

OH1

SC

OH2

BH

MH

U

D

D
fold call

BH
I −1 2

op. −1 −2

draw −1 0

U(BH, D)

The expected utility of call:

EU(call|e) = 2 · P (BH = I|e) − 2 · P (BH = op.|e) + 0 · P (BH = draw|e)

=
X

BH
U(BH, call)P (BH|e)
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Mildew

Two months before the harvest the farmer observes the state, Q, of his wheat field, and he
can check whether the field is attacked by mildew, M. If there is a mildew attack he can
decide for a treatment with fungicides.
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Mildew

Two months before the harvest the farmer observes the state, Q, of his wheat field, and he
can check whether the field is attacked by mildew, M. If there is a mildew attack he can
decide for a treatment with fungicides.

OM

M

OQ

Q Harvest

M∗

A C

U

EU(A|e) = C(A) +
X

Harvest
U(Harvest)P (Harvest|A, e)
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One action in general

D

Ul

Uj

Uk

Ui has domain Xi
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One action in general

D

Ul

Uj

Uk

Ui has domain Xi

EU(D|e) =
X

X1

U1(X1)P (X1|D, e) + · · · +
X

Xn

Un(Xn)P (Xn|D, e)

Choose an action with largest EU:

Opt(D|e) = arg max
D

EU(D|e)
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Utilities without money

Two courses: Graph algorithms (GA) and DSS

Marks: 0, 1, 2, 3, 4, 5 (≥ 2 is a pass)

Effort: Keep pace (kp), slow down (sd), follow superficially (fs)

Effort
kp sd fs

GA

0 0 0 0.1

1 0.1 0.2 0.1

2 0.1 0.1 0.4

3 0.2 0.4 0.2

4 0.4 0.2 0.2

5 0.2 0.1 0

P (GA|Effort)

Effort
kp sd fs

DSS

0 0 0 0.1

1 0 0.1 0.2

2 0.1 0.2 0.2

3 0.2 0.2 0.3

4 0.4 0.4 0.2

5 0.3 0.1 0

P (DSS|Effort)

Max-score? Max-pass? Otherwise?
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Marks as utilities?

Effort
kp sd fs

GA

0 0 0 0.1

1 0.1 0.2 0.1

2 0.1 0.1 0.4

3 0.2 0.4 0.2

4 0.4 0.2 0.2

5 0.2 0.1 0

P (GA|Effort)

Effort
kp sd fs

DSS

0 0 0 0.1

1 0 0.1 0.2

2 0.1 0.2 0.2

3 0.2 0.2 0.3

4 0.4 0.4 0.2

5 0.3 0.1 0

P (DSS|Effort)

EU(kp,fs) =
X

m∈GA

P (m|kp)m +
X

m∈DSS

P (m|fs)m

= (0.1 · 1 + 0.1 · 2 + 0.2 · 3 + 0.4 · 4 + 0.2 · 5) + (0.2 · 1 + 0.2 · 2 + 0.3 · 3 + 0.2 · 4) = 5.8
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Marks as utilities?

Effort
kp sd fs

GA

0 0 0 0.1

1 0.1 0.2 0.1

2 0.1 0.1 0.4

3 0.2 0.4 0.2

4 0.4 0.2 0.2

5 0.2 0.1 0

P (GA|Effort)

Effort
kp sd fs

DSS

0 0 0 0.1

1 0 0.1 0.2

2 0.1 0.2 0.2

3 0.2 0.2 0.3

4 0.4 0.4 0.2

5 0.3 0.1 0

P (DSS|Effort)

EU(kp,fs) =
X

m∈GA

P (m|kp)m +
X

m∈DSS

P (m|fs)m

= (0.1 · 1 + 0.1 · 2 + 0.2 · 3 + 0.4 · 4 + 0.2 · 5) + (0.2 · 1 + 0.2 · 2 + 0.3 · 3 + 0.2 · 4) = 5.8

EU(sd,sd) = 6.1
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Marks as utilities?

Effort
kp sd fs

GA

0 0 0 0.1

1 0.1 0.2 0.1

2 0.1 0.1 0.4

3 0.2 0.4 0.2

4 0.4 0.2 0.2

5 0.2 0.1 0

P (GA|Effort)

Effort
kp sd fs

DSS

0 0 0 0.1

1 0 0.1 0.2

2 0.1 0.2 0.2

3 0.2 0.2 0.3

4 0.4 0.4 0.2

5 0.3 0.1 0

P (DSS|Effort)

EU(kp,fs) =
X

m∈GA

P (m|kp)m +
X

m∈DSS

P (m|fs)m

= (0.1 · 1 + 0.1 · 2 + 0.2 · 3 + 0.4 · 4 + 0.2 · 5) + (0.2 · 1 + 0.2 · 2 + 0.3 · 3 + 0.2 · 4) = 5.8

EU(sd,sd) = 6.1

EU(fs,kp) = 6.2

However, does the marks really reflect your utilities?
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Subjective lotteries

I consider 2 as the worst mark (utility 0) and 5 as the best mark (utility 1). Now imagine the
following lottery:

2

5

X

p

1 − p 4

For which p am I indifferent??
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Subjective lotteries

I consider 2 as the worst mark (utility 0) and 5 as the best mark (utility 1). Now imagine the
following lottery:

2

5

X

p

1 − p 4

For which p am I indifferent??

The utility table:
0 1 2 3 4 5

0.05 0.1 0 0.6 0.8 1

Effort

GA

DSS

UGA

UDSS
(kp,fs),(sd,sd),(fs,kp)

EU(Effort) = (1.015, 1.07, 1.035)
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Instrumental rationality

1. Reflexivity. For any lottery A, A � A
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2. Completeness. For any pair (A, B) of lotteries, A � B or B � A.
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4. Preference increasing with probability. If A � B then αA + (1 − α)B � βA + (1 − β)B if and
only if α ≥ β.
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Instrumental rationality

1. Reflexivity. For any lottery A, A � A

2. Completeness. For any pair (A, B) of lotteries, A � B or B � A.

3. Transitivity. If A � B and B � C, then A � C.

4. Preference increasing with probability. If A � B then αA + (1 − α)B � βA + (1 − β)B if and
only if α ≥ β.

5. Continuity. If A � B � C then there exists α ∈ [0, 1] such that B ∼ αA + (1 − α)C

6. Independence. If C = αA + (1 − α)B and A ∼ D, then C ∼ (αD + (1 − α)B).

Theorem: For an individual who acts according to a preference ordering satisfying rules 1-6
above, there exists a utility function over the outcomes s.t. the expected utility is maximized.
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Are you rational

Recall:
• Lottery A = [$1mill.],

• Lottery B = 0.1[$5mill.] + 0.89[$1mill.] + 0.01[$0].

• Lottery C = 0.11[$1mill.] + 0.89[$0],

• Lottery D = 0.1[$5mill.] + 0.9[$0].
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Are you rational

Recall:
• Lottery A = [$1mill.],

• Lottery B = 0.1[$5mill.] + 0.89[$1mill.] + 0.01[$0].

• Lottery C = 0.11[$1mill.] + 0.89[$0],

• Lottery D = 0.1[$5mill.] + 0.9[$0].

Let U(5mill) = 1, U(0) = 0, U(1mill) = u. If you prefer A over B we get

u > 0.1 + 0.89u ⇔ u >
10

11
.
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Are you rational

Recall:
• Lottery A = [$1mill.],

• Lottery B = 0.1[$5mill.] + 0.89[$1mill.] + 0.01[$0].

• Lottery C = 0.11[$1mill.] + 0.89[$0],

• Lottery D = 0.1[$5mill.] + 0.9[$0].

Let U(5mill) = 1, U(0) = 0, U(1mill) = u. If you prefer A over B we get

u > 0.1 + 0.89u ⇔ u >
10

11
.

Hence,

EU(C) = 0.11u > 0.11
10

11
= 0.1 = EU(D),

and C should therefore be preferred over D.
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Decision trees

Inf Test

T

Test

y

Pour?pos

Inf?
pour

99.94n

−0.06y
97.94

throw

Pour?neg
Inf?

pour
99.94n

−0.06y
97.94

throw

Pour?

n Inf?
pour

0y

100n
98

throw
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Decision trees

Inf Test

T

Test

y

Pour?pos

Inf?
pour

99.94n

−0.06y
97.94

throw

Pour?neg
Inf?

pour
99.94n

−0.06y
97.94

throw

Pour?

n Inf?
pour

0y

100n
98

throw

Branches from chance nodes, ©, shall be labeled with the probability of the branch given

the path down to the node. The probabilities can be found from the model © → © .
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Solving decision trees I

Inf Test

T

Test

y

Pour?

pos: 0.0
107

Inf?pour

99.94
n: 0.9351

−0.06
y: 0.0649

97.94throw

Pour?

neg: 0.9893
Inf?pour

99.94
n: 0.99999

3

−0.06
y: 0.000007

97.94throw

Pour?

n
Inf?pour

0
y: 0.0007

100
n: 0.9993

98throw
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Solving decision trees I

Inf Test

T

Test

y

Pour?

pos: 0.0
107

Inf?pour

99.94
n: 0.9351

−0.06
y: 0.0649

97.94throw

Pour?

neg: 0.9893
Inf?pour

99.94
n: 0.99999

3

−0.06
y: 0.000007

97.94throw

Pour?

n
Inf?pour

0
y: 0.0007

100
n: 0.9993

98throw

The decision tree can be solved by going from the leaves towards the root:
• Take weighted sum through chance nodes.

• Take max through decision nodes.
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Solving decision trees II

D1

A

d1
1

D2
0.7

E
d2
1

1
0.4

2
0.6

E

d2
2

−3
0.3

4
0.7

1.5
0.3

B
d1
2

2
0.9

0
0.1

C

d1
3

3
0.8

−1
0.2
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Solving decision trees II

D1

A

d1
1

1.78

D2
0.7
1.33

E
d2
1

1.6

1
0.4
0.4

2
0.6
1.2

E

d2
2

1.9
−3

0.3
−0.9

4
0.7
2.8

1.5
0.3
0.45

B
d1
2

1.8

2
0.9
1.8

0
0.1
0

C

d1
3

2.2

3
0.8
2.4

−1
0.2

−0.2
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Decision trees: characteristics

Advantages:

➤ All scenarios are represented explicitly.

➤ Very few restrictions on the decision problems that can be represented.

Disadvantages:

➤ Two separate models are used: one representing the structure and one representing
the uncertainties.

➤ The size of the decision trees grows exponentially in the number of variables.
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An alternative representation

OH0

FC

OH1

SC

OH2

BH

MH2MH1MH0

U

D

MSCMFC

But how do we represent the sequence of decisions and observations?
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Representing the decision sequence

Possible representation:

OH0

FC

OH1

SC

OH2

BH

MH2MH1MH0

U

D

MSCMFC

All nodes observed before a decision are parents of that decision.

➤ Assuming that the decision maker doesn’t forget, then some links are redundant!
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Representing the decision sequence

A better representation (an influence diagram):

OH0

FC

OH1

SC

OH2

BH

MH2MH1MH0

U

D

MSCMFC

Advantages:

• You can read the sequence of decisions.
• You can read what is known at each point of decision.
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Influence diagrams

D1

U1

B D F H I

A C E G K

J

D2 D3

D4U2 U3

U4

Nodes and links:

© Chance variable → causal links

� Decision variable → information links

♦ Utility function → utility link, U =
P

i Ui.

Note:
• We assume no-forgetting.
• A directed path comprising all decisions ⇒ the scenario is well-defined.
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Influence diagrams and Hugin

In Hugin the nodes are depicted as:

Chance variable ©

Decision variable: �

Utility nodes: ♦

Note that:
• No tables are specified for decision nodes.
• A utility function is specified for a utility node.
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Influence diagrams: Characteristics

Advantages:

➤ Grows only linearly in the number of variables.

➤ Requires only one model for representing both structure as well as the uncertainty
model.

Disadvantages:

➤ The sequence of observations and decisions is the same in all scenarios (the decision
problem is symmetric).

Definition: A decision problem is said to be symmetric if:

➤ In all decision tree representations, the number of scenarios is the same as the cardi-
nality of the Cartesian product of the state spaces of all chance and decision variables.

➤ in one decision tree representation, the sequence of observations and decisions is the
same in all scenarios.
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Symmetric decision trees

D1 D2

B

F

A C

E

U

D1

A

D2

C

C

D2

C

C

A

D2

C

C

D2

C

C
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Symmetric decision trees

D1 D2

B

F

A C

E

U

D1

A

D2

C

C

D2

C

C

A

D2

C

C

D2

C

C

The sequence of observations and decisions is the same in all scenarios:

D1 A D2 C
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Optimal strategy I

D1 D2

B

F

A C

E

U

D1

A

D2

C

C

D2

C

C

A

D2

C

C

D2

C

C
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Optimal strategy I

D1 D2

B

F

A C

E

U

D1

A

D2

C

C

D2

C

C

A

D2

C

C

D2

C

C

Solution for influene diagrams:

1. Determine a policy for D2: σD2
(D1, A) → D2.

For this we need P (C|D1, A, D2).

2. Use σD2
for determining a policy for D1: σD1

→ D1.

For this we need P (A|D1).

All probabilities can be achieved from the model without folding out the decision tree.
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Optimal strategy II

OH0

FC

OH1

SC

OH2

BH

MH2MH1MH0

U

D

MSCMFC

The policy for D: σD(MH0, MFC, FC, MH1, MSC, SC, MH2) → D

We request: P (BH|MH0, MFC, FC, MH1, MSC, SC, MH2, D)
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Optimal strategy II

OH0

FC

OH1

SC

OH2

BH

MH2MH1MH0

U

D

MSCMFC

The policy for D: σD(MH0, MFC, FC, MH1, MSC, SC, MH2) → D

We request: P (BH|MH0, MFC, FC, MH1, MSC, SC, MH2, D)

From d-separation we can find the relevant past!
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Fishing in the north sea

Based on measurements, T , a quota for fishing volume, FV , for next year is decided. The
amount of fish, V , and the quota determines the utility.

Chapter 9 – p. 26/31



Fishing in the north sea

Based on measurements, T , a quota for fishing volume, FV , for next year is decided. The
amount of fish, V , and the quota determines the utility.

A five year period:

T1

FV1

V1

U1

T2

FV2

V2

U2

T3

FV3

V3

U3

T4

FV4

V4

U4

T5

FV5

V5

U5

Unfortunately, the optimal policy for FV5 depends on the entire past:

σFV5
(T1, FV1, T2, FV2, T3, FV3, T4, FV4, T5)

This is intractable!
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Information blocking

T1

FV1

V1

U1

T2

FV2

V2

U2

T3

FV3

V3

U3

T4

FV4

V4

U4

T5

FV5

V5

U5

To make the calculations tractable we use an approximation instead:

T1

FV1

V1

U1

T2

FV2

V2

U2

T3

FV3

V3

U3

T4

FV4

V4

U4

T5

FV5

V5

U5

The probability P (V2|T1, FV1) is taken from the initial model.
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The dangers of non-observed nodes

Temporal links between non-observed nodes are dangerous!

B1

E1

A1

C1

D1

U1

B2

E2

A2

C2

D2

U2

B3

E3

A3

C3

D3

U3
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The dangers of non-observed nodes

Temporal links between non-observed nodes are dangerous!

B1

E1

A1

C1

D1

U1

B2

E2

A2

C2

D2

U2

B3

E3

A3

C3

D3

U3

We introduce history variables to summarize the past:

B1

E1

A1

C1

D1

Hist1

U1

B2

E2

A2

C2

D2

Hist2

U2
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When are ID’s suitable for repeated use

• The sequence of decisions D1, D2, . . . , Dn is fixed.

• The chance variables in Ii are always observed after Di and before Di+1.

• The decision maker remembers the past.

• The decision problem is symmetric.

The decision-observation sequence is independent of the actual observations and
decisions.
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A cause of asymmetry: Test decisions

Take your temperature before deciding on aspirin.

Flue Fever A-Fever Sleepy

Aspirin
Temp

You only observe the test result (Fever) if you decide to take your temperature
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A cause of asymmetry: Test decisions

But these problems can still be modeled in influence diagrams:

Flue Fever A-Fever Sleepy

AspirinTF F’

Fever
y n

TF
y (1, 0, 0) (0, 1, 0)

n (0, 0, 1) (0, 0, 1)

P (F ′ = (y, n, no-t)|Fever, TF )
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Transformation of test-decisions in general

A

D
TA

TA A′ D

A

A
a1 a2 · · · an

TA
y (1, 0, . . . , 0) (0, 1, 0, . . . , 0) · · · (0, . . . , 0, 1, 0)

n (0, . . . , 1) (0, . . . , 1) · · · (0, . . . , 1)

P (F ′ = (a1, . . . , an, no − t)|A, TA)
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