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Building models

Milk from a cow may be infected. To detect whether or not the milk is infected, you can apply
a test which may either give a positive or a negative test result. The test is not perfect: It may
give false positives as well as false negatives.
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Building models

Milk from a cow may be infected. To detect whether or not the milk is infected, you can apply
a test which may either give a positive or a negative test result. The test is not perfect: It may
give false positives as well as false negatives.

Hypothesis events
Inf: y,n

Information events
Test: pos,neg
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7-day model I

Infections develop over time:

Inf1

Test1

Inf2

Test2

Inf3

Test3

Inf4

Test4

Inf5

Test5

Inf6

Test6

Inf7

Test7
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7-day model I

Infections develop over time:

Inf1

Test1

Inf2

Test2

Inf3

Test3

Inf4

Test4

Inf5

Test5

Inf6

Test6

Inf7

Test7

Assumption:

• The Markov property: If I know the present, then the past has no influence on the
future, i.e.

Infi−1 is d-separated from Infi+1 given Infi.

But what if yesterday’s Inf-state has an impact on tomorrow’s Inf-state?
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7-day model II

Yesterday’s Inf-state has an impact on tomorrow’s Inf-state:

Inf1

Test1

Inf2

Test2

Inf3

Test3

Inf4

Test4

Inf5

Test5

Inf6

Test6

Inf7

Test7

Chapter 3 – p. 4/47



7-day model III

The test-failure is dependent on whether or not the test failed yesterday:

Inf1

Test1

Inf2

Test2

Inf3

Test3

Inf4

Test4

Inf5

Test5

Inf6

Test6

Inf7

Test7
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Sore throat

I wake up one morning with a sore throat. It may be the beginning of a cold or I may suffer
from angina. If it is a severe angina, then I will not go to work. To gain more insight, I can
take my temperature and look down my throat for yellow spots.
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Sore throat

I wake up one morning with a sore throat. It may be the beginning of a cold or I may suffer
from angina. If it is a severe angina, then I will not go to work. To gain more insight, I can
take my temperature and look down my throat for yellow spots.

Hypothesis variables:

Cold? - {n, y}
Angina? - {no, mild, severe}

Information variables:

Sore throat? - {n, y}
See spots? - {n, y}
Fever? - {no, low, high}
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Model for sore throat

Fever? Sore Throat? See spots?

Cold? Angina?
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Model for sore throat

Fever? Sore Throat? See spots?

Cold? Angina?
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Insemination of a cow

Six weeks after the insemination of a cow, there are two tests: a Blood test and a Urine test.

Blood test Urine test

Pregnant?
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Insemination of a cow

Six weeks after the insemination of a cow, there are two tests: a Blood test and a Urine test.

Blood test Urine test

Pregnant?

Check the conditional independences:

If we know that the cow is pregnant, will a negative blood test then change our expectation
for the urine test?

If it will, then the model does not reflect reality!
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Insemination of a cow: A more correct model

Blood test Urine test

Pregnant?

Hormonal changesMediating variable

But does this actually make a difference?
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Insemination of a cow: A more correct model

Blood test Urine test

Pregnant?

Hormonal changesMediating variable

But does this actually make a difference?

Blood test Urine test

Pregnant?Assume that both tests are negative in the incorrect model:
This will overestimate the probability for Pregnant?=n.
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Why mediating variables?

Why do we introduce mediating variables:

➤ Necessary to catch the correct conditional independences.

➤ Can ease the specification of the probabilities in the model.

For example: If you find that there is a dependence between two variables A and B, but
cannot determine a causal relation: Try with a mediating variable!

A B

C

??

⇒

A B

D

C

OR

A B

C D
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A simplified poker game

The game consists of:

➤ Two players.

➤ Three cards to each player.

➤ Two rounds of changing cards (max two cards in the second round)

What kind of hand does my opponent have?
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A simplified poker game

The game consists of:

➤ Two players.

➤ Three cards to each player.

➤ Two rounds of changing cards (max two cards in the second round)

What kind of hand does my opponent have?

Hypothesis variable:

OH - {no, 1a, 2v, fl, st, 3v, sf}

Information variables:

FC - {0, 1, 2, 3} and SC - {0, 1, 2}
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A simplified poker game

The game consists of:

➤ Two players.

➤ Three cards to each player.

➤ Two rounds of changing cards (max two cards in the second round)

What kind of hand does my opponent have?

Hypothesis variable:

OH - {no, 1a, 2v, fl, st, 3v, sf}

Information variables:

FC - {0, 1, 2, 3} and SC - {0, 1, 2}

SC

FC OH

But how do we find:

P (FC), P (SC|FC) and P (OH|SC, FC)??
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A simplified poker game: Mediating variables

Introduce mediating variables:
• The opponent’s initial hand, OH0.
• The opponent’s hand after the first change of cards, OH1.

OH0

FC

OH1

SC

OH

Note: The states of OH0 and OH1 are different from OH.
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Naïve Bayes models

Hyp

Inf1 Infn

P (Hyp)

P (Inf1|Hyp) P (Infn|Hyp)

We want the posterior probability of the hypothesis variable Hyp given the observations
{Inf1 = e1, . . . , Infn = en}:

P (Hyp|Inf1 = e1, . . . , Infn = en) =
P (Inf1 = e1, . . . , Infn = en|Hyp)P (Hyp)

P (Inf1 = e1, . . . , Infn = en)

= µ · P (Inf1 = e1|Hyp) · . . . · P (Infn = en|Hyp)P (Hyp)

Note: The model assumes that the information variables are independent given the
hypothesis variable.
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Summary: Catching the structure

1. Identify the relevant events and organize them in variables:
• Hypothesis variables - Includes the events that are not directly observable.

• Information variables - Information channels.

2. Determine causal relations between the variables.

3. Check conditional independences in the model.

4. Introduce mediating variables.
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Where do the numbers come from?

• Theoretical insight.

• Statistics (large databases)

• Subjective estimates
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Infected milk

Inf Test

We need the probabilities:
• P (Test|Inf) - provided by the factory.

• P (Inf) - cow or farm specific.

Determining P (Inf): Assume that the farmer has 50 cows. The milk is poured into a container,

and the dairy tests the milk with a very precise test. In average, the milk is infected once per
month.
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Infected milk

Inf Test

We need the probabilities:
• P (Test|Inf) - provided by the factory.

• P (Inf) - cow or farm specific.

Determining P (Inf): Assume that the farmer has 50 cows. The milk is poured into a container,

and the dairy tests the milk with a very precise test. In average, the milk is infected once per
month.

Calculations:

P (#Cows-infected ≥ 1) =
1

30
hence P (#Cows-infected < 1) = 1 −

1

30
=

29

30
.

If P (Inf = y) = x, then P (Inf = n) = (1 − x) and:

(1 − x)50 =
29

30
⇔ x = 1 −

„

29

30

« 1

50

≈ 0.00067
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7-day model I

Infections develop over time:

Infi

Testi

Infi+1

Testi+1

From experience we have:
• Risk of becoming infected? 0.0002
• Chance of getting cured from one day to another? 0.3
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7-day model I

Infections develop over time:

Infi

Testi

Infi+1

Testi+1

From experience we have:
• Risk of becoming infected? 0.0002
• Chance of getting cured from one day to another? 0.3

This gives us:

Infi
y n

Infi+1
y
n

P (Infi+1|Infi)
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7-day model I

Infections develop over time:

Infi

Testi

Infi+1

Testi+1

From experience we have:
• Risk of becoming infected? 0.0002
• Chance of getting cured from one day to another? 0.3

This gives us:

Infi
y n

Infi+1
y 0.7 0.0002

n 0.3 0.9998

P (Infi+1|Infi)
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7-day model II

Infi−1

Testi−1

Infi

Testi

Infi+1

Testi+1

Infi−1

y n

Infi
y 0.6 1

n 0.0002 0.0002

P (Infi+1 = y|Infi−1, Infi)

That is:
• An infection always lasts at least two days.
• After two days, the chance of being cured is 0.4.

However, we also need to specify P (Testi+1|Infi+1, Testi, Infi):

• A correct test has a 99.9% of being correct the next time.
• An incorrect test has a 90% of being incorrect the next time.

This can be done much easier by introducing mediating variables!
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7-day model III

Infi−1

Testi−1

Infi

Testi

Infi+1

Testi+1

Cori−1 Cori

We need the probabilities:

Infi
y n

Testi
Pos
Neg

P (Cori = y|Infi, Testi)

Infi
y n

Cori−1
y
n

P (Testi = Pos|Infi, Cori−1)
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7-day model III

Infi−1

Testi−1

Infi

Testi

Infi+1

Testi+1

Cori−1 Cori

We need the probabilities:

Infi
y n

Testi
Pos 1 0

Neg 0 1

P (Cori = y|Infi, Testi)

Infi
y n

Cori−1
y 0.999 0.001

n 0.1 0.9

P (Testi = Pos|Infi, Cori−1)
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Stud farm

Genealogical structure for the horses in a stud farm:

L Ann Brian Cecily K

Fred Dorothy Eric Gwen

Henry Irene

John e

We get evidence e that John is sick.
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Stud farm: Conditional probabilities I

The disease is carried by a recessive gene:

aa: sick, aA: Carrier, AA: Healthy

We should specify the probabilities:

Mother
aa aA AA

Father
aa ( , , ) (, , ) (, , )
aA (, , ) (, , ) (, , )
AA (, , ) (, , ) (, , )

P (Offspring|Father, Mother)
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Stud farm: Conditional probabilities I

The disease is carried by a recessive gene:

aa: sick, aA: Carrier, AA: Healthy

We should specify the probabilities:

Mother
aa aA AA

Father
aa (1, 0, 0) (0.5, 0.5, 0) (0, 1, 0)
aA (0.5, 0.5, 0) (0.25, 0.5, 0.25) (0, 0.5, 0.5)
AA (0, 1, 0) (0, 0.5, 0.5) (0, 0, 1)

P (Offspring|Father, Mother)
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Stud farm: Conditional probabilities II

But the other horses are not sick:
• John: aa, aA, AA.
• Other horses: aA, AA.

Prior probabilities:

P (aA) = 0.01 and P (AA) = 0.99.

Conditional probabilities:

Irene
aA AA

Henry
aA (0.25,0.5,0.25) (0,0.5,0.5)
AA (0,0.5,0.5) (0,0,1)

P (John|Henry, Irene)

Mother
aA AA

Father
aA ( , ) ( , )
AA ( , ) ( , )

P (Offspring|Father, Mother)
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Stud farm: Conditional probabilities II

But the other horses are not sick:
• John: aa, aA, AA.
• Other horses: aA, AA.

Prior probabilities:

P (aA) = 0.01 and P (AA) = 0.99.

Conditional probabilities:

Irene
aA AA

Henry
aA (0.25,0.5,0.25) (0,0.5,0.5)
AA (0,0.5,0.5) (0,0,1)

P (John|Henry, Irene)

Mother
aA AA

Father
aA (2/3,1/3) (0.5,0.5)
AA (0.5,0.5) (0,1)

P (Offspring|Father, Mother)

Drop the first state and normalize:

( 0.25 , 0.5, 0.25) ⇒ (2/3, 1/3)
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A simplified poker game I

OH0

FC

OH1

SC

OH

In order to find:

P (OH0) = (__No, __1a, __2cons, __2s, __2v, __fl, __st, __3v, __sf)

we have to go into combinatorics: #good
“

52

3

” .
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A simplified poker game I

OH0

FC

OH1

SC

OH

P (OH0) ≈ (0.167No, 0.0451a, 0.0642cons, 0.4662s, 0.1692v, 0.049fl, 0.035st, 0.0023v, 0.002sf)

we have to go into combinatorics: #good
“

52

3

” . For example,

P (OH0 = st) =
54 · 4 · 4 − 52

`

52

3

´ .

Similar considerations apply to P (OH1|OH0, FC). E.g.

P (OH1|2cons, 1) = (0No, 01a, 0.3742cons, 0.3672s, 0.1222v, 0fl, 0.163st, 03v, 0sf)
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A simplified poker game II

OH0

FC

OH1

SC

OH

Theoretical considerations are not enough:
P (FC|OH0) = What is my opponents strategy?

Assume the strategy:
no → 3

1a → 2

2s ∨ 2cons ∨ 2v → 1

2cons ∧ 2s → 1 (Keep 2s)

2cons ∧ 2v ∨ 2s ∧ 2v → 1 (Keep 2v)

fl ∨ st ∨ 3v ∨ sf → 0

Note: the states 2cons ∧ 2s, 2cons ∧ 2v, 2s ∧ 2v are redundant.
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A simplified poker game II

OH0

FC

OH1

SC

OH

Theoretical considerations are not enough:
P (FC|OH0) = What is my opponents strategy?

Assume the strategy:
no → 3

1a → 2

2s ∨ 2cons ∨ 2v → 1

2cons ∧ 2s → 1 (Keep 2s)

2cons ∧ 2v ∨ 2s ∧ 2v → 1 (Keep 2v)

fl ∨ st ∨ 3v ∨ sf → 0

Note: the states 2cons ∧ 2s, 2cons ∧ 2v, 2s ∧ 2v are redundant.
However, knowing my system my opponent may “bluff”.
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Transmission of symbol strings

A language L over {a, b} is transmitted through a channel. Each word is surrounded by c.
In the transmission some characters may be corrupted by noise and may be confused with
others.

A five-letter word has been transmitted.

Hypothesis variables:

Information variables:
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Transmission of symbol strings

A language L over {a, b} is transmitted through a channel. Each word is surrounded by c.
In the transmission some characters may be corrupted by noise and may be confused with
others.

A five-letter word has been transmitted.

Hypothesis variables: T1, T2, T3, T4, T5 (States: a, b)

Information variables: R1, R2, R3, R4, R5 (States: a, b, c)

T1 T2 T3 T4 T5

R1 R2 R3 R4 R5
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Transmission of symbol strings

A language L over {a, b} is transmitted through a channel. Each word is surrounded by c.
In the transmission some characters may be corrupted by noise and may be confused with
others.

A five-letter word has been transmitted.

Hypothesis variables: T1, T2, T3, T4, T5 (States: a, b)

Information variables: R1, R2, R3, R4, R5 (States: a, b, c)

T1 T2 T3 T4 T5

R1 R2 R3 R4 R5

P (Ri|Ti) can be determined through statistics:

Ri

Ri = a Ri = b Ri = c

Ti
a 0.8 0.1 0.1

b 0.15 0.8 0.05

Are the Ti’s independent?
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Transmission of symbol strings

T1

R1

T2

R2

T3

R3

T4

R4

T5

R5

To find P (Ti+1|Ti): Look at the permitted words and their frequencies.

Last 3
aaa aab aba abb baa bab bba bbb

F
irs

t2

aa 0.017 0.021 0.019 0.019 0.045 0.068 0.045 0.068

ab 0.033 0.040 0.037 0.038 0.011 0.016 0.010 0.015

ba 0.011 0.014 0.010 0.010 0.031 0.046 0.031 0.045

bb 0.050 0.060 0.057 0.057 0.016 0.023 0.015 0.023
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Transmission of symbol strings

T1

R1

T2

R2

T3

R3

T4

R4

T5

R5

To find P (Ti+1|Ti): Look at the permitted words and their frequencies.

Last 3
aaa aab aba abb baa bab bba bbb

F
irs

t2

aa 0.017 0.021 0.019 0.019 0.045 0.068 0.045 0.068

ab 0.033 0.040 0.037 0.038 0.011 0.016 0.010 0.015

ba 0.011 0.014 0.010 0.010 0.031 0.046 0.031 0.045

bb 0.050 0.060 0.057 0.057 0.016 0.023 0.015 0.023

P (T2 = a|T1 = a) =
P (T2 = a, T1 = a)

P (T1 = a)
=

0.017 + 0.021 + · · · + 0.068

0.017 + · · · + 0.068 + 0.033 + · · · 0.015
= 0.6
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Cold or angina? I

Fever? Sore Throat? See spots?

Cold? Angina?

Subjective estimates:

P (Cold?) = (0.97, 0.03)

P (Angina?) = (0.993, 0.005, 0.002)

Angina?
no mild severe

See spots?
no 1 1 0.1

yes 0 0 0.9

P (See spots?|Angina?)

But how do we find e.g. P (Sore throat?|Angina?, Cold?)?
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Cold or angina? II

Fever? Sore Throat? See spots?

Cold? Angina?

• If neither Cold? nor Angina?, then P (Sore throat? = y) = 0.05.

• If only Cold?, then P (Sore throat? = y) = 0.4.

• If only Angina? = mild, then P (Sore throat? = y) = 0.7.

• If Angina? = severe, then P (Sore throat? = y) = 1.

Angina?
no mild severe

Cold?
no 0.05 0.7 1

yes 0.4 ?? 1

P (Sore throat? = y|Cold?, Angina?)
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Cold or angina? III

We have the partial specification:

Angina?
no mild severe

Cold?
no 0.05 0.7 1

yes 0.4 ?? 1

P (Sore throat? = yes|Cold?, Angina?)

In order to find P (Sore throat = yes|Cold? = yes, Angina? = mild) assume that:

Out of 100 mornings, I have a “background” sore throat on 5 of them.
• 95 left: 40% “cold-sore” = 38

• 57 left: 70% “mild angina-sore” = 39.9

In total: 5 + 38 + 39.9 = 82.9 → 85.
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Cold or angina? III

We have the partial specification:

Angina?
no mild severe

Cold?
no 0.05 0.7 1

yes 0.4 ?? 1

P (Sore throat? = yes|Cold?, Angina?)

In order to find P (Sore throat = yes|Cold? = yes, Angina? = mild) assume that:

Out of 100 mornings, I have a “background” sore throat on 5 of them.
• 95 left: 40% “cold-sore” = 38

• 57 left: 70% “mild angina-sore” = 39.9

In total: 5 + 38 + 39.9 = 82.9 → 85.
Angina?

no mild severe

Cold?
no 0.05 0.7 1

yes 0.4 0.85 1
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Cold or angina? I

Fever? Sore Throat? See spots?

Cold? Angina?

Subjective estimates:

P (Cold?) = (0.97, 0.03)

P (Angina?) = (0.993, 0.005, 0.002)

Angina?
no mild severe

See spots?
no 1 1 0.1

yes 0 0 0.9

P (See spots?|Angina?)

But how do we find e.g. P (Sore throat?|Angina?, Cold?)?
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Cold or angina? II

Fever? Sore Throat? See spots?

Cold? Angina?

• If neither Cold? nor Angina?, then P (Sore throat? = y) = 0.05.

• If only Cold?, then P (Sore throat? = y) = 0.4.

• If only Angina? = mild, then P (Sore throat? = y) = 0.7.

• If Angina? = severe, then P (Sore throat? = y) = 1.

Angina?
no mild severe

Cold?
no 0.05 0.7 1

yes 0.4 ?? 1

P (Sore throat? = y|Cold?, Angina?)
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Cold or angina? III

We have the partial specification:

Angina?
no mild severe

Cold?
no 0.05 0.7 1

yes 0.4 ?? 1

P (Sore throat? = yes|Cold?, Angina?)

In order to find P (Sore throat = yes|Cold? = yes, Angina? = mild) assume that:

Out of 100 mornings, I have a “background” sore throat on 5 of them.
• 95 left: 40% “cold-sore” = 38

• 57 left: 70% “mild angina-sore” = 39.9

In total: 5 + 38 + 39.9 = 82.9 → 85.
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Cold or angina? III

We have the partial specification:

Angina?
no mild severe

Cold?
no 0.05 0.7 1

yes 0.4 ?? 1

P (Sore throat? = yes|Cold?, Angina?)

In order to find P (Sore throat = yes|Cold? = yes, Angina? = mild) assume that:

Out of 100 mornings, I have a “background” sore throat on 5 of them.
• 95 left: 40% “cold-sore” = 38

• 57 left: 70% “mild angina-sore” = 39.9

In total: 5 + 38 + 39.9 = 82.9 → 85.
Angina?

no mild severe

Cold?
no 0.05 0.7 1

yes 0.4 0.85 1
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Several independent causes, in general

Cause1

Causen

Effect

Causei results in Effect with
probability xi.

P (Effect = yes|Combination of causes) = ??
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Several independent causes, in general

Cause1

Causen

Effect

Causei results in Effect with
probability xi.

P (Effect = yes|Combination of causes) = ??

Way to look at it: Causei results in Effect unless it is inhibited by “something”.

The Inhibitor has probability qi = 1 − xi.

Assumption: The Inhibitors are independent.

That is, the probability of “Inhi and Inhj ” = qiqj .

Thus,
P (Effect = yes|Causei, Causej , Causek) = 1 − qiqjqk
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Noisy or

A1

An

B

All nodes are binary.

All causes for B are listed explicitly.

1 − q1

1 − qn

In general:

P (B = y|Ai1 = · · · = Aik
= y, the rest = n) = 1 − qi1 · · · qik

If only A1 and A2 are on:

P (B = y|A1 = y, A2 = y, the rest = n) = 1 − q1q2

Note: If P (B = y|All = n) = x > 0, then introduce a background cause C which is always
on, and qc = 1 − x.

Chapter 3 – p. 34/47



Divorcing

B

A1

A2

A3

A4

B

C1

A1

A2

A3

A4

B

C1

A1

A2

C2

A3

A4

35 = 243 34 + 33 = 108 3 · 33 = 81

Can this always be done?
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Divorcing

B

A1

A2

A3

A4

B

C1

A1

A2

A3

A4

B

C1

A1

A2

C2

A3

A4

35 = 243 34 + 33 = 108 3 · 33 = 81

Can this always be done?

Buy?

Price Condition Size Age Brand
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Divorcing: An example

F

A: a1, a2, a3

B: b1, b2, b3

D: d1, d2, d3

E: e1, e2, e3

P (F |a1, b2, D, E) = P (F |a2, b1, D, E)

P (F |a1, b1, D, E) = P (F |a2, b2, D, E)

P (F |a3, bi, D, E) = P (F |aj , b3, D, E)
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Divorcing: An example

F

C: c1, c2, c3

A: a1, a2, a3

B: b1, b2, b3

D: d1, d2, d3

E: e1, e2, e3

P (F |a1, b2, D, E) = P (F |a2, b1, D, E)

P (F |a1, b1, D, E) = P (F |a2, b2, D, E)

P (F |a3, bi, D, E) = P (F |aj , b3, D, E)

P (C|a1, b2) = P (C|a2, b1) = (1, 0, 0)

P (C|a1, b1) = P (C|a2, b2) = (0, 1, 0)

P (C|a3, bi) = P (C|aj , b3) = (0, 0, 1)

P (F |c1, D, E) = P (F |a1, b2, D, E)

P (F |c2, D, E) = P (F |a1, b1, D, E)

P (F |c3, D, E) = P (F |a3, bi, D, E)
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Logical constraints

I have washed two pairs of socks, and now it is hard to distinguish them. Still it is important
for me to couple them correctly. The color and pattern give indications.

Sock1: t1, t2

P1:
p1, p2

C1:
c1, c2

Sock2: t1, t2

P2:
p1, p2

C2:
c1, c2

Sock3: t1, t2

P3:
p1, p2

C3:
c1, c2

Sock4: t1, t2

P4:
p1, p2

C4:
c1, c2
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Logical constraints

I have washed two pairs of socks, and now it is hard to distinguish them. Still it is important
for me to couple them correctly. The color and pattern give indications.

Sock1: t1, t2

P1:
p1, p2

C1:
c1, c2

Sock2: t1, t2

P2:
p1, p2

C2:
c1, c2

Sock3: t1, t2

P3:
p1, p2

C3:
c1, c2

Sock4: t1, t2

P4:
p1, p2

C4:
c1, c2

Const.: y,n

S3, S4

t1, t1 t1, t2 t2, t1 t2, t2

S
1
,S

2

t1, t1 0 0 0 1

t1, t2 0 1 1 0

t2, t1 0 1 1 0

t2, t2 1 0 0 0

P (Const. = y|Sock1, . . . , Sock4)

y
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Expert disagreement

A C

B

D

There are three experts:
B

y n

C
y 0.4 0.7

n 0.6 0.9

P1(D = y|B, C)

B

y n

C
y 0.4 0.9

n 0.4 0.7

P2(D = y|B, C)

B

y n

C
y 0.6 0.7

n 0.5 0.9

P3(D = y|B, C)

I believe twice as much in P3 as I do in the others!
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Expert disagreement

A C

B

DS

There are three experts:
B

y n

C
y 0.4 0.7

n 0.6 0.9

P1(D = y|B, C)

B

y n

C
y 0.4 0.9

n 0.4 0.7

P2(D = y|B, C)

B

y n

C
y 0.6 0.7

n 0.5 0.9

P3(D = y|B, C)

I believe twice as much in P3 as I do in the others!

Encode the confidence in P (S):

P (S) = (0.25, 0.25, 0.5)

hence, B

y n

C
y (0.4, 0.4, 0.6) (0.7, 0.9, 0.7)

n (0.6, 0.4, 0.5) (0.9, 0.7, 0.9)

P (D = y|B, C, S)
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Interventions

Clean the spark plugs:

Fuel SP

St?FM
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Interventions

Clean the spark plugs:

Fuel SP

St?FM SP-C

St-C?

Clean
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Joint probabilities I

Fever? Sore Throat? See spots?

Cold? Angina?

It is not unusual to suffer from both cold and angina, so we look for the joint probability:

P (Angina?, Cold?|ē)
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Joint probabilities I

Fever? Sore Throat? See spots?

Cold? Angina?

It is not unusual to suffer from both cold and angina, so we look for the joint probability:

P (Angina?, Cold?|ē)

From the fundamental rule we have:

P (Angina?, Cold?|ē) = P (Angina?|Cold?, ē)P (Cold?|ē)

The probability:

• P (Cold?|ē) can be found by propagating ē.

• P (Angina?|Cold?, ē) can be found from P (Angina?|Cold? = yes, ē) and
P (Angina?|Cold? = no, ē).
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Joint probabilities II

From the fundamental rule we have:

P (Angina?, Cold?|ē) = P (Angina?|Cold?, ē)P (Cold?|ē)

Assume that:
e = (Fever? = no, SeeSpots? = yes, SoreThroat? = no).

We can calculate: P (Cold?|ē) = ( , )

As well as:

• P (Angina?|Cold? = yes, ē) = ( , , )

• P (Angina?|Cold? = no, ē) = ( , , )

We can now calculate P (Angina?, Cold?|ē):

Angina?
no mild severe

Cold?
no
yes
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Joint probabilities II

From the fundamental rule we have:

P (Angina?, Cold?|ē) = P (Angina?|Cold?, ē)P (Cold?|ē)

Assume that:
e = (Fever? = no, SeeSpots? = yes, SoreThroat? = no).

We can calculate: P (Cold?|ē) = (0.997(n), 0.003(y))

As well as:

• P (Angina?|Cold? = yes, ē) = (0(n), 1(m), 0(s))

• P (Angina?|Cold? = no, ē) = (0(n), 0.971(m), 0.029(s))

We can now calculate P (Angina?, Cold?|ē):

Angina?
no mild severe

Cold?
no 0 0.968 0.029

yes 0 0.003 0
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Most probable explanation (MPE)

We can find the most probable configuration of Cold? and Angina? from:

P (Angina?, Cold?|ē)

However, this can be achieved must faster:
• Use maximization instead of summation when marginalizing out a variable.
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Most probable explanation (MPE)

We can find the most probable configuration of Cold? and Angina? from:

P (Angina?, Cold?|ē)

However, this can be achieved must faster:
• Use maximization instead of summation when marginalizing out a variable.

This gives us MPE(Cold?)=no and MPE(Angina?)=mild.
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Is the evidence reliable?

Since I see Fever? = no and SoreThroat? = no it seems questionable that I see spots!
• Can this warning be given by the system?
• Is the evidence coherent?
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Is the evidence reliable?

Since I see Fever? = no and SoreThroat? = no it seems questionable that I see spots!
• Can this warning be given by the system?
• Is the evidence coherent?

For a coherent case covered by the model we expect the evidence to support each other:

P (e1, e2) > P (e1)P (e2)

We can measure this using:

conf(e1, e2) = log2

P (e1)P (e2)

P (e1, e2)

Thus, if conf(e1, e2) > 0 we take it as an indication that the evidence is conflicting.
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Example

conf(Fever? = no, SeeSpots? = yes, SoreThroat? = no)

= log2

P (Fever? = no)P (SeeSpots? = yes)P (SoreThroat? = no)

P (Fever? = no, SeeSpots? = yes, SoreThroat? = no)

= log2

0.960 · 0.002 · 0.978

7.5131 · 10−7

= log2(24993.47) = 11.32

Thus, we take it as an indication that the evidence is conflicting!
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What are the crucial findings?

We would like to answer questions such as:
• What are the crucial findings?

• What if one of the findings were changed or removed?

• What set of findings would be sufficient for the conclusion?

Assume the conclusion that I suffer from mild angina:

Chapter 3 – p. 45/47



What are the crucial findings?

We would like to answer questions such as:
• What are the crucial findings?

• What if one of the findings were changed or removed?

• What set of findings would be sufficient for the conclusion?

Assume the conclusion that I suffer from mild angina:

It is not enough with SeeSpots? = yes:
• P (Angina?|SeeSpots? = yes) = (0(n), 0.024(m), 0.976(s))

However, SeeSpots? = yes and SoreThroat? = no is sufficient:
• P (Angina?|SeeSpots? = yes, SoreThroat? = no) = (0(n), 0.884(m), 0.116(s))

In this case findings on Fever? is irrelevant, e.g.:
• P (Angina?|SeeSpots? = yes, SoreThroat? = no, Fever? = high) =

(0(n), 0.683(m), 0.317(s))
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Sensitivity to variations in parameters

The initial tables:

Angina? no mild severe
Cold? no yes no yes no yes

no 0.995 0.6 0.3 0.15 0.001 0

yes 0.005 0.4 0.7 0.85 0.999 1

P (Sore throat?|Angina?, Cold?)

Angina? no mild severe

no 1 0.99 0

yes 0 0.01 1

P (See spots?|Angina?)
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Sensitivity to variations in parameters

The initial tables:

Angina? no mild severe
Cold? no yes no yes no yes

no 0.995 0.6 0.3 0.15 0.001 0

yes 0.005 0.4 0.7 0.85 0.999 1

P (Sore throat?|Angina?, Cold?)

Angina? no mild severe

no 1 0.99 0

yes 0 0.01 1

P (See spots?|Angina?)

Assume that we have the parameters:

Angina? no mild severe
Cold? no yes no yes no yes

no 0.995 0.6 0.3 0.15 t 0

yes 0.005 0.4 0.7 0.85 0.999 1

P (Sore throat?|Angina?, Cold?)

Angina? no mild severe

no 1 0.99 0

yes 0 s 1

P (See spots?|Angina?)

We want e.g.:

P (Angina? = mild|ē)(t) ; P (Angina? = mild|ē)(s) ; P (Angina? = mild|ē)(s, t)
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Sensitivity analysis

Theorem:
P (ē)(t) = αt + β = x(t)

Thus, we also have that P (Angina? = mild, ē)(t) = a · t + b = y(t), and therefore:

P (Angina? = mild|ē)(t) =
y(t)

x(t)
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Sensitivity analysis

Theorem:
P (ē)(t) = αt + β = x(t)

Thus, we also have that P (Angina? = mild, ē)(t) = a · t + b = y(t), and therefore:

P (Angina? = mild|ē)(t) =
y(t)

x(t)

For t = 0.001 we have x(t) = 7.513 · 10−7 and y(t) = 7.298 · 10−7.

If we change t to 0.002 and propagate we get:

x(0.002) = 7.7286 · 10−7 y(0.002) = 7.2975 · 10−7

We can now determine the coefficients α, β, a and b!
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