Bayesian Networks and Decision Graphs

Chapter 2

Chapter 2 — p. 1/36



The grand vision

An autonomous self-moving machine that acts and reasons like a human

We are still very far away from achieving this goal!
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The grand vision

An autonomous self-moving machine that acts and reasons like a human

We are still very far away from achieving this goal!

Research is going in two directions:
® Robotics

® Artificial intelligence
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A recent achievement: DARPA grand challenge 2005

Competition for autonomous vehicles: navigate 132 miles through desert terrain (route
specified by approx. 3000 “waypoints”). 5 out of 23 vehicles completed the task. Winner:
Stanley of Stanford Racing Team in 6h 53m (19.2 mph).

® 7 Pentium M computers

® Sensors: 4 laser range finders, 1 radar system, 1 stereo camera pair, 1 monocular
vision system, GPS, inertial measurement unit, wheel speed.
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Robotics

Tasks:
® Visual recognition of objects
® Recognition of sound patterns
® Balancing (to walk with n legs)
® Positioning in space

Criteria of success: Real time movement in space.
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Robotics

Tasks:
® Visual recognition of objects
® Recognition of sound patterns
® Balancing (to walk with n legs)
® Positioning in space

Criteria of success: Real time movement in space.

Scientifically and computationally extremely demanding, however:

® basically you construct a machine that behaves like an animal (dog, ant, etc.)
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Artificial intelligence

Areas:
® Complex arithmetic
® Reduction of mathematical expressions
® Computations
® Games (chess)
® Type setting
Computers can do (much of) this—they do not really require artificial intelligence!

A particular branch of Al has to do with reasoning

® E.g. Logical reasoning (Boolean algebra and its algorithms).

When a task is understood so much that it can be formalized, then it is no longer considered
intelligent.
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Boolean logic

Examples:

It rains = The grass is wet , It rains

It rains = The grass is wet , The grass is not wet

What if there is uncertainty?

» “If | take a cup of coffee in the break, then | may stay awake during the next lecture”.

Uncertainty can appear and be expressed in several ways:
® Fuzzy concepts (large, heavy, pretty)
® Uncertain information

® Non-deterministic relations
- Disease — Symptoms
- Treatment — Result

® Incomplete knowledge/information
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Reasoning under uncertainty

Imagine that we extend Boolean algebra with certainty = € [0; 1].

» “A holds with certainty z”.

Combination:

® | take a cup of coffee in the break — (.5 | will stay awake
® | take a walk in the break — ¢ g | will stay awake

Suppose that | take a walk as well as have a cup of coffee. Then:
® | stay awake with certainty f(0.5,0.8)
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Reasoning under uncertainty

Imagine that we extend Boolean algebra with certainty = € [0; 1].

» “A holds with certainty z”.

Combination:

® | take a cup of coffee in the break — (.5 | will stay awake
® | take a walk in the break — ¢ g | will stay awake

Suppose that | take a walk as well as have a cup of coffee. Then:

® | stay awake with certainty f(0.5,0.8)

Chaining:
a — CBb b — ’yc y(
c with certainty g(z, v)

Abduction:

woman — g glong hair , long hair
woman with certainty ??
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Human wisdom

Apply accumulated and processed experience

/ \

Learning ==

Interpretation
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Car start problem

In the morning, my car will not start. The start engine turns, but nothing happens. The
battery is OK. The problem may be due to dirty spark plugs or the fuel may be stolen. | look

at the fuel meter. It shows % and | therefore expect the spark plugs to be dirty.
We need to formalize this kind of reasoning:

e What made me focus upon fuel and spark plugs?
e Why did | look at the fuel meter?
e Why had fuel meter reading an impact on my belief in dirty spark plugs?
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The car start problem (causally)

Events:
e Fuel?{y,n}
e Clean spark plugs?{y,n}
e Start?{y,n}
e Fuel meter{full, 2 ,empty}.
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The car start problem (causally)

Events:
e Fuel?{y,n}
e Clean spark plugs?{y,n}
e Start?{y,n}
e Fuel meter{full, 2 ,empty}.

Causal relations:

Fuel? Clean spark plugs?

Fuel meter? Start? -==----

When | enter the car | have some prior belief on the various events but then start=n.
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Direction change of belief

Call:

® the direction from n to y positive.

® the direction more fuel positive.

Fuel? — Fuel meter_, = Fuel?—  Fuel meter

-

Note: Fuel meter—. , = Fuel?

—F
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The reasoning

Fuel? Clean spark plugs?

Fuel meter? Start?
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The reasoning

Fuel meter? Start?
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The reasoning

______ _> 4_ —_ e — — — —
- - - - - - - - - - - - - -
Fuel? Clean spark plugs?
+ + +
Fuel meter? Start?
1 v
§ ) - =~ ~
~no
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Causal networks

A causal network is a directed acyclic graph:

@@@
OO

® The nodes are variables with a finite set of states that are mutually exclusive and

exhaustive:
- For example {y,n}, {red, blue, green}, {0,1,2,3,42}.

® The links represent cause — effect relations.

For example:

Religion
Prot., Cath.,

#Children

. 0,1,2,3,>4
Muslim

All variables are in exactly one state, but we may not know which one.
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Reasoning under uncertainty 1

WaterLevel Flooding

® |If there has been a flooding does that tell me something about the amount of rain that
has fallen?

® The water level is high: If there has been a flooding does that tell me anything new
about the amount of rain that has fallen?
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Reasoning under uncertainty 2

Sex
man, woman

Stature
< 168cm, > 168cm

Hair
long, short

® If a person has long hair does that say something about his/her stature?
® Itis a woman: If she has long hair does that say something about her stature?
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Reasoning under uncertainty 3

Salmonella Flue
y,n y,n

® Does salmonella have an impact on Flue?

® |f a person is Pale, does salmonella then have an impact on Flue?
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Transmission of evidence 1

Relevance changes with evidence
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Transmission of evidence 3
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Quantification of causal networks

Religion #Children
Prot., Cath., 0.1.2.3.>4
Muslim T

The strength of the IS represented by probabilities:

P(0lp) P(0]c) P(0]m)
P(1lp) P(l]e) P(1|m)
P(2|p) P(2|c) P(2|m)
P(3|p) P(3|c) P(3|m)
P(=4lp) P(=4lc) P(=4|m)
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The strength of the

P(0[p)
P(1[p)
P(2[p)
P(3[p)
P(> 4|p)

Quantification of causal networks

P(0]c)
P(l]e)
P(2|c)
P(3|c)
P(= 4]c)

Religion
Prot., Cath.,

Muslim

P(0m)
P(1|m)
P(2|m)
P(3|m)
P(> 4]m)

#Children
0,1,2,3,>4

IS represented by probabilities:

Religion
p c m
0 | 0.15 005 0.05
s 1 |02 01 01
é = 2 | 04 02 01
@ 3 |02 04 01
>4 1005 025 035

P(#Children|Religion)
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P(yly,y)
P(nly,y)
P(yln,y)
P(nln,y)

P(yly,n)
P(nly,n)
P(yln,n)
P(n|n,n)

Several parents

Salmonella
y, n

AN

Nausea

Salmonella

Flue

P(Nausea|Salmonella,Flue)
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Bayesian networks

A causal network without directed cycles:

O, @ @O ©
& 6 ©
® © ® @

OK

For each variable A with parents By, ..., B, there is a conditional probability table
P(A|B1,...,Bnp).

@ Note: Nodes without parents receive a prior distribution.
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Belief updating in Bayesian networks |
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Belief updating in Bayesian networks |

n

Consider evidence e; =(Start=n) and find:
® P(Spark Plugs|e1) =77
® P(Fuelle;) =77

® P(Fuel Meter|e;) =77
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Belief updating in Bayesian networks |

Consider evidence e; =(Start=n) and find:
® P(Spark Plugs|e1) =77
® P(Fuelle;) =77

® P(Fuel Meter|e;) =77

If we also have evidence e>=(Fuel Meter = %) what is:
® P(Spark Plugslei,es) =77

o P(Fuel|el, 62) =77
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Belief updating in Bayesian networks ||

Consider again the network:

Religion
Prot., Cath.,

#Children

. 0,1,2,3,> 4
Muslim

Assume that the probabilities are: P(Religion) = (0.9p, 0.04¢, 0.06m) and

Religion Religion
P C m P C m
0 0.15 0.05 0.05 0 0.135 0.002 0.003
s 1 |02 01 01 — S 1 | 018 0.004 0.006
o =
= 2 0.4 0.2 0.1 = 2 0.36 0.008  0.006
Q@ 3 |02 04 04 Q 3 | 018 0.016 0.024
>4 1 005 0.25 0.35 >4 1 0.045 0.01 0.021
P(#Children|Religion) P(#Children, Religion)

We want the probability P(Religion|#Children = 3)!
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Belief updating in Bayesian networks ||

Let A, B and C be variables.

The fundamental rule: P(A, B) = P(A|B)P(B).

Marginalization: P(A) = ) .5 P(A, B)

Bayes rule:

P(A|B)P(B)
P(A)

P(B|A) =
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Belief updating in Bayesian networks ||

Religion
Prot., Cath.,

#Children

_ 0,1,2,3,>4
Muslim

We can compute P(Religion|#Children = 3) using Bayes’ rule:

P (#Children = 3|Religion) P(Religion)

P(Religion|#Children = 3) =
(Religion| ) = TS raton P(Religion, #Children = 3)

Religion
P C m
0.135 0.002 0.003 Religion
E 1 0.18 0.004 0.006 Conditioning p C m
©
= 0.36  0.008 0.006 — | 0.82 0.07 0.11
Q P(Religion|#Children = 3)
>4 | 0.045 0.01 0.021

P(#Children, Religion)
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Normalization

Consider the joint probability table P(A, B, C'):

B
by bo bs
4 @1 | (0,0.05,0.05) (0.05,0.05,0) (0.05,0.05,0.05)
as | (0.1,0.1,0) (0.1,0,0.1) (0.2,0,0.05)

Assume evidence e: A = as and C = ¢;.
What is:

P(B,e) =77

P(B,e)

=77
P(e)

P(Ble) =
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Normalization

Consider the joint probability table P(A, B, C'):

B
by bo bs
4 @1 | (0,0.05,0.05) (0.05,0.05,0) (0.05,0.05,0.05)
as | (0.1,0.1,0) (0.1,0,0.1) (0.2,0,0.05)

Assume evidence e: A = as and C = ¢;.
What is:

P(B,e) = (0.1,0.1,0.2)

P(Ble) = & ](f(i)@ —77
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Normalization

Consider the joint probability table P(A, B, C'):

B
by bo bs
4 @1 | (0,0.05,0.05) (0.05,0.05,0) (0.05,0.05,0.05)
as | (0.1,0.1,0) (0.1,0,0.1) (0.2,0,0.05)

Assume evidence e: A = as and C = ¢;.
What is:

P(B,e) = (0.1,0.1,0.2)

P(B,e)  (0.1,0.1,0.2)
P(e) 0.4

P(Ble) = — (0.25,0.25,0.5)
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Conditional independence

A is independent of B:
® Information on B does not change my belief in A.

P(A|B) = P(A)

In the context ¢, P(A|B, c) = P(A|c):

® Aisindependent of B given c.

If the state of B is known then A is independent of C'.

P(A|B,C) = P(A|B)

@ @@ o

Conditional independence is symmetric:
P(A|B,C) = P(A|B) < P(C|A,B) = P(C|B).
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Conditional independence: An example

Turnover in % (type,

,shop)

Weekday
$nd5e5

P(Shop|

P(Shop|Mo) =77

(2.52,1.05,0.63)
(3.57,1.49, 0.89)
(3.99,1.66, 1.00)
(4.20,1.75,1.05)
(4.62,1.93,1.65)
(2.70,0.87,0.53)

,Mo) =77

3.24,1.35,0.81)
4.59,1.91,1.15)
5.13,2.14,1.28)
5.40, 2.25, 1.35)
5.94,2.47,1.49)
2.70,1.13,0.67)

~ A~ A~~~ A~

(1.44,0.60, 0.36)
(2.04,0.85,0.51)
(2.28,0.95,0.57)
(2.40,1.00, 0.60)
(2.64,1.10,0.66)
(1.20,0.50, 0.30)
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Conditional independence: An example

Turnover in % (type,

,shop)

Weekday

Mo
Tu
We
Th
Fr
Sa

P(Shop| ,Mo) =

P(Shop|Mo) =77

(2.52,1.05,0.63)
(3.57,1.49, 0.89)
(3.99,1.66, 1.00)
(4.20,1.75,1.05)
(4.62,1.93,1.65)
(2.70,0.87,0.53)

(2.52,1.05,0.63)

2.52 4+ 1.05+ 0.63

3.24,1.35,0.81)
4.59,1.91,1.15)
5.13,2.14,1.28)
5.40, 2.25, 1.35)
5.94,2.47,1.49)
2.70,1.13,0.67)

~ A~~~ A~~~

— (0.6,0.25,0.15)

(1.44,0.60, 0.36)
(2.04,0.85,0.51)
(2.28,0.95,0.57)
(2.40,1.00, 0.60)
(2.64,1.10,0.66)
(1.20,0.50, 0.30)
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Conditional independence: An example

Turnover in % (type,

,shop)

Weekday

(2.52,  ,0.63)
(3.57,1.49, 0.89)
(3.99,1.66, 1.00)
(4.20,1.75,1.05)
(4.62,1.93,1.65)
(2.70,0.87,0.53)

(3.24,  ,0.81)
(4.59,1.91,1.15)
(5.13,2.14, 1.28)
(5.40, 2.25,1.35)
(5.94, 2.47,1.49)
(2.70,1.13,0.67)

(1.44, ,0.36)
(2.04,0.85,0.51)
(2.28,0.95,0.57)
(2.40,1.00, 0.60)
(2.64,1.10,0.66)

(1.20,0.50, 0.30)

(2.52,1.05,0.63)
2.52 + 1.05 + 0.63
(252 +324+1.44,  + =+
12

P(Shop| ,Mo) = = (0.6,0.25,0.15)

,0.63 4+ 0.81 4+ 0.36
P(Shop|Mo) = * + )

= (0.6,0.25,0.15)
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Bayesian belief updating
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Bayesian belief updating

(») (©
©® & Find P(Bla, f, 0, h)
®» © O

We can if we have access to P(a,B,C, D, E, f,qg,h):

P(B,a,f,9,h)= > P(a,B,C,D,E, f,g,h)
C,D,E

P(B7a’7f7g7h)
P(a, f,g,h) °

P(Bla, f,9,h) =

where

P(a, f,g,h) :ZP(B,a,f,g,h)
B

Chapter 2 — p. 28/36



Joint probabilities

P(A)

@ Calculate P(A,B,C, D, F)

P(B|A) @ P(C|A)
® ©

P(D|B,C) P(E|C)
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Joint probabilities

P(A)

@ Calculate P(A,B,C, D, F)

P(B|A) @ P(C|A)
® ©

P(D|B,C) P(E|C)

P(A,B,C,D,E) = P(E|A, B,C,D)P(A, B,C, D)
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Joint probabilities

P(A)

@ Calculate P(A,B,C, D, F)

P(B|A) @ P(C|A)
® ©

P(D|B,C) P(E|C)

P(A,B,C,D,E) = P(E|A, B,C,D)P(A, B,C, D)
= P(E|C)P(A, B,C, D)
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Joint probabilities

P(A)

@ Calculate P(A,B,C, D, F)

P(B|A) @ P(C|A)
® ©

P(D|B,C) P(E|C)
P(A,B,C,D,E) = P(E|A, B,C,D)P(A, B,C, D)

— P(E|C)P(A, B,C, D)
— P(E|C)P(D|A, B,C)P(A, B, C)
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Joint probabilities

P(A)

@ Calculate P(A,B,C, D, F)

P(B|A) @ P(C|A)
® ©

P(D|B,C) P(E|C)

P(A,B,C,D,E) = P(E|A,B,C,D)P(A, B,C, D)
= P(E|C)P(A, B, C, D)
= P(E|C)P(D|A, B,C)P(A, B,C)
= P(E|C)P(D|B,C)P(A, B,C)
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Joint probabilities

P(A)

@ Calculate P(A,B,C, D, F)

P(B|A) @ P(C|A)
® ©

P(D|B,C) P(E|C)

P(A,B,C,D,E) = P(E|A, B,C, D)P(A, B,C, D)
— P(E|C)P(A, B,C, D)
— P(E|C)P(D|A, B,C)P(A, B,C)
— P(E|C)P(D|B,C)P(A, B, C)
— P(E|C)P(D|B,C)P(C|A, B)P(A, B)
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Joint probabilities

P(A)

@ Calculate P(A,B,C, D, F)

P(B|A) @ P(C|A)
® ©

P(D|B,C) P(E|C)

P(A,B,C,D,E) = P(E|A, B,C, D)P(A, B,C, D)
— P(E|C)P(A, B,C, D)
— P(E|C)P(D|A, B,C)P(A, B, C)
— P(E|C)P(D|B,C)P(A, B,C)
— P(E|C)P(D|B,C)P(C|A, B)P(A, B)
— P(E|C)P(D|B,C)P(C|A)P(B, A)
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Joint probabilities

P(A)

@ Calculate P(A,B,C, D, F)

P(B|A) @ P(C|A)
® ©

P(D|B,C) P(E|C)

P(A,B,C,D,E) = P(E|A,B,C,D)P(A, B, C, D)
— P(E|C)P(A, B,C, D)
— P(E|C)P(D|A, B,C)P(A, B, C)
— P(E|C)P(D|B,C)P(A, B,C)
— P(E|C)P(D|B,C)P(C|A, B)P(A, B)
— P(E|C)P(D|B,C)P(C|A)P(B, A)
— P(E|C)P(D|B,C)P(C|A)P(B|A)P(A)
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The chain rule

------- Let BN be a Bayesian network overid = {A1,..., Ay}
Then:
....... P(U) = [1; P(Ai|Pa(Ay)),
where Pa(A;) are the parents of A;.

® P(U) is the product of the potentials specified in BN.

® BN is a compact representation of P(U1).

PU) = P(AUN\{A})PU\ {A})

....... (©) = P(AIB, ..., O) [Txeu\ (a3 P(XIPa(X))
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Evidence |

Consider a variable A with five states a1, as, a3, a4, a5 and with probability:

R
L2
P(A) == I3 y E r; — 1

\as/

Assume that we get the evidence e: “A is either in state a2 or a4”. Then:

() (m) [
xro o 1
P(Aje)=10]=1]z3]|-]0

) ) )

Thus, e can be represented by a potential ¢ = (0,1,0,1,0)” and:

P(A,e) = P(A) - &
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Evidence Il

Definition: Let A be a variable with n states. A on A is an n-dimensional table with 0s

and 1s.

Semantics: The states marked with a 0 are impossible.

Theorem: Let BN be a Bayesian network over the universed = {A1,...,An}, and let ey,
€2,..., ém be findings. Then:

PU,e)=PU)-|]e
1=1
= [ [ PAilPa(4:)) ] | ;-
. ol

Hence, to find P(A|e) we use:
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Variable elimination

P(A) .
Do we need P(U) = P(A,B,C, D, E) in order to

@ calculate P(Alc,e)?
P(B|A) @ P(C|A)  Note: P(Ale,e) = &=E ZD}iii’)B’C,D’e)-

P(D|B,C) P(E|C)
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Variable elimination

P(A) .
Do we need P(U) = P(A,B,C, D, E) in order to

@ calculate P(Alc,e)?
P(B|A) @ P(C|A)  Note: P(Ale,e) = &=E ZD}iii’)B’C,D’e)-

P(D|B,C) P(E|C)

> > P(A,B,c,D,e) =Y > P(e|c)P(c|A)P(D|c, B)P(A)P(B|A)
B D

B D
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Variable elimination

P(A) .
Do we need P(U) = P(A,B,C, D, E) in order to

@ calculate P(Alc,e)?
P(B|A) @ P(C|A)  Note: P(Ale,e) = &=E ZD}iii’)B’C,D’e)-

P(D|B,C) P(E|C)

> > P(A,B,c,D,e) =Y > P(e|c)P(c|A)P(D|c, B)P(A)P(B|A)
B D

B D

= P(e|c)P(c|A)P(A) Y > P(D|c, B)P(B|A)
B D
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Variable elimination

P(A) .
Do we need P(U) = P(A,B,C, D, E) in order to

@ calculate P(Alc,e)?
P(B|A) @ P(C|A)  Note: P(Ale,e) = &=E ZD}iii’)B’C,D’e)-

©

P(D|B,C) P(E|C)

> > P(A,B,c,D,e) =Y > P(e|c)P(c|A)P(D|c, B)P(A)P(B|A)
B D B D
= P(e|c)P(c|A)P(A) Z Z P(D|c, B)P(B|A)

P(e|c)P(c|A)P A)ZP B|A)ZP Dlc, B)
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Variable elimination

P(A)
@ calculate P(A|c,e)?

P(B|A) @ P(C|A)  Note: P(Ale,e) = &=E ZDziii’f’c’D’e)-

©

P(D|B,C) P(E|C)

> > P(A,B,c,D,e) =Y > P(e|c)P(c|A)P(D|c, B)P(A)P(B|A)
B D B D
= P(e|c)P(c|A)P(A) Y > P(D|c, B)P(B|A)
B D

P(e|c)P(c|A)P A)ZP B|A)ZP Dlc, B)

— P(e|c)P(c|A)P(A)

So instead of constructing a table with 2° entries we only need 2 numbers!

Do we need P(U) = P(A,B,C, D, E) in order to
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Left Suralis

Left Axillaris - Deltoideus
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The Munin network

Right Suralis

—_— Characteristics:

Right Axillaris - Deltoideus D Approxlmately 1 100 Varlables.

[1 Each variable has between 2
and 20 states.

Right Ulnaris - Abductor Digiti Minimi
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[0 10990 possible state configu-
rations!
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A system for diagnosing neuro-muscular diseases.
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Graphical models

Bayesian networks is one example of graphical models:

Qualitative part : A with nodes and links.

Quantitative part : A set of

Pros:
® Graphs are excellent for inter-human communication.

® Graphical models can be given a sufficient formal semantics.

® Graphical models can be given a formal semantics so that they can be “read” by
computers.

Problems:
® The scope of the models.
® The computation task may be intractable.
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Summary

What have we considered today?

® Conditional independence:

- A and C are independent given B if P(A|C, B) = P(A|B).
This is related to serial and diverging connections.
® Bayesian networks:

- A directed acyclic graph, where there for each node A with parents By,..., B, is
attached a conditional probability table P(A|B1, ..., By).

® The chain rule:

- For a Bayesian network overid = {A1,..., A, } we have:
PU) = [1iZ, P(AilPa(Aq)).
® Evidence:
- Ifeq, ..., e, are findings, then:

n m P U,e
PU,e) = [ P(AilPa(4:) [] & P(Ale) = Z”\{f(e)( -
1=1 7j=1
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