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Two perspectives on probability theory

In many domains, the probability of an outcome is interpreted as a relative frequency:
• The probability of getting a three by throwing a six-sided die is 1/6.

However, we often talk about the probability of an event without being able to specify a
frequency for it:

• What is the probability that Denmark wins the world cup in 2010?

Such probabilities are called subjective probabilities
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Two perspectives on probability theory

In many domains, the probability of an outcome is interpreted as a relative frequency:
• The probability of getting a three by throwing a six-sided die is 1/6.

However, we often talk about the probability of an event without being able to specify a
frequency for it:

• What is the probability that Denmark wins the world cup in 2010?

Such probabilities are called subjective probabilities

Possible interpretation:

• I receive Dkr 1000 if Denmark wins.
• If I draw a red ball I receive Dkr 1000.
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Basic probability axioms

The set of possible outcomes of an “experiment” is called the sample space S:
• Throwing a six sided die: {1, 2, 3, 4, 5, 6}.

• Will Denmark win the world cup: {yes,no}.

• The values in a deck of cards: {2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A}.
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Basic probability axioms

The set of possible outcomes of an “experiment” is called the sample space S:
• Throwing a six sided die: {1, 2, 3, 4, 5, 6}.

• Will Denmark win the world cup: {yes,no}.

• The values in a deck of cards: {2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A}.

An event E is a subset of the sample space:
• The event that we will get an even number when throwing a die: {2, 4, 6}.

• The event that Denmark wins: {yes}.

• The event that we will get a 6 or below when drawing a card: {2, 3, 4, 5, 6}.
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Basic probability axioms

The set of possible outcomes of an “experiment” is called the sample space S:
• Throwing a six sided die: {1, 2, 3, 4, 5, 6}.

• Will Denmark win the world cup: {yes,no}.

• The values in a deck of cards: {2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A}.

An event E is a subset of the sample space:
• The event that we will get an even number when throwing a die: {2, 4, 6}.

• The event that Denmark wins: {yes}.

• The event that we will get a 6 or below when drawing a card: {2, 3, 4, 5, 6}.

We measure our uncertainty about an experiment by assigning probabilities to each event.
The probabilities must obey the following axioms:

• P (S) = 1.

• For all events E it holds that P (E) ≥ 0.

• If E1 ∩ E2 = ∅, then P (E1 ∪ E2) = P (E1) + P (E2).

E1 E2

S
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Conditional probabilities

Every probability is conditioned on a context. For example, if we throw a dice:

“P ({six}) = 1
6

” = “P (six|symmetric dice) = 1
6

”.

In general, if A and B are events and P (A|B) = x, then:

“In the context of B we have that P (A) = x”

Note: It is not “whenever B we have P (A) = x”, but rather: if B and everything else known is
irrelevant to A, then P (A) = x.

Definition: For two events A and B we have:

P (A|B) =
P (A∩ B)

P (B)

Example:

P (A = {4}|B = {2, 4, 6}) =
P (A ∩ B = {4})

P (B = {2, 4, 6})
=

1/6

3/6
=

1

3
.
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Basic probability calculus: the fundamental rule

Let A, B and C be events.

The fundamental rule: P (A ∩ B) = P (A|B)P (B).

The fundamental rule, conditioned: P (A ∩ B|C) = P (A|B ∩ C)P (B|C).

Proof: Derived directly from the definition of conditional probability.
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Basic probability calculus: Bayes’ rule

Bayes rule:

P (B|A) =
P (A|B)P (B)

P (A)

Proof:
P (B|A)P (A) = P (B ∩ A) = P (A|B)P (B)

Bayes rule, conditioned:

P (B|A ∩ C) =
P (A|B ∩ C)P (B|C)

P (A|C)

Example: We have two diseases A1 and A2 that are the only diseases that can cause the

symptoms B. If
• A1 and A2 are equally likely (P (A1) = P (A2))

• P (B|A1) = 0.9

• P (B|A2) = 0.3

what are then the probabilities P (A1|B) and P (A2|B)?
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Basic probability calculus

Let A, B and C be events.

Conditional probability: P (A|B) =
P (A∩B)

P (B)

The fundamental rule: P (A ∩ B) = P (A|B)P (B).

The conditional fundamental rule: P (A ∩ B|C) = P (A|B ∩ C)P (B|C).
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Basic probability calculus

Let A, B and C be events.

Conditional probability: P (A|B) =
P (A∩B)

P (B)

The fundamental rule: P (A ∩ B) = P (A|B)P (B).

The conditional fundamental rule: P (A ∩ B|C) = P (A|B ∩ C)P (B|C).

Bayes rule: P (B|A) =
P (A|B)P (B)

P (A)
.

Proof: P (B|A)P (A) = P (B ∩ A) = P (A|B)P (B).

Bayes rule, conditioned: P (B|A ∩ C) =
P (A|B∩C)P (B|C)

P (A|C)
.

Conditional independence: If P (A|B ∩ C) = P (A|C) then P (A ∩ B|C) = P (A|C) · P (B|C).
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Probability calculus for variables

A is a variable with states a1, . . . , an; B is a variable with states b1, . . . , bm.

P (A) = (x1, . . . , xn) is a probability distribution ; xi ≥ 0;
Pn

i=1 xi = 1 (
P

A P (A) = 1).

P (A|B) is a n × m table containing the numbers P (ai|bj).

Note:
P

A P (A|bj) = 1 for all bj .

B

b1 b2 b3

A
a1 0.4 0.3 0.6

a2 0.6 0.7 0.4

P (A, B) is a n × m table too;
P

A,B P (A, B) = 1.

B

b1 b2 b3

A
a1 0.16 0.12 0.12

a2 0.24 0.28 0.08
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The fundamental rule for variables

P (A|B)P (B): n × m multiplications P (ai|bj)P (bj) = P (ai, bj)

b1 b2 b3

a1 0.4 0.3 0.6

a2 0.6 0.7 0.4

b1 b2 b3

0.4 0.4 0.2
=

b1 b2 b3

a1 0.16 0.12 0.12

a2 0.24 0.28 0.08

P (A|B) P (B) P (A, B)

Chapter 1 – p. 9/13



The fundamental rule for variables

P (A|B)P (B): n × m multiplications P (ai|bj)P (bj) = P (ai, bj)

b1 b2 b3

a1 0.4 0.3 0.6

a2 0.6 0.7 0.4

b1 b2 b3

0.4 0.4 0.2
=

b1 b2 b3

a1 0.16 0.12 0.12

a2 0.24 0.28 0.08

P (A|B) P (B) P (A, B)

A is independent of B given C if P (A|B, C) = P (A|C).

b1 b2 b3

c1 (0.4, 0.6) (0.4, 0.6) (0.4, 0.6)

c2 (0.7, 0.3) (0.7, 0.3) (0.7, 0.3)

=
a1 a2

c1 0.4 0.6

c2 0.7 0.3

P (A|B, C) P (A|C)
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Marginalization

We have P (A, B) and we need P (A).

b1 b2 b3

a1 0.16 0.12 0.12 → 0.4

a2 0.24 0.28 0.08 → 0.6

B is marginalized out of P (A, B):

”A = a1” = (”A = a1” ∧ ”B = b1”) ∨ (”A = a1” ∧ ”B = b2”) ∨ (”A = a1” ∧ ”B = b3”)

= 0.16 + 0.12 + 0.12 = 0.4

”A = a2” = (”A = a2” ∧ ”B = b1”) ∨ (”A = a2” ∧ ”B = b2”) ∨ (”A = a2” ∧ ”B = b3”)

= 0.24 + 0.28 + 0.08 = 0.6

Notation: P (A) =
P

B P (A, B)
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Notation

A potential φ is a table of real numbers over a set of variables, dom(φ).

A table of probabilities is a probability potential.

Chapter 1 – p. 11/13



Notation

A potential φ is a table of real numbers over a set of variables, dom(φ).

A table of probabilities is a probability potential.

Multiplication

b1 b2

a1 2 1

a2 3 4

b1 b2

a1 1 2

a2 5 6

=
b1 b2

a1

a2
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Notation

A potential φ is a table of real numbers over a set of variables, dom(φ).

A table of probabilities is a probability potential.

Multiplication

b1 b2

a1 2 1

a2 3 4

b1 b2

a1 1 2

a2 5 6

=
b1 b2

a1 2

a2
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Notation

A potential φ is a table of real numbers over a set of variables, dom(φ).

A table of probabilities is a probability potential.

Multiplication

b1 b2

a1 2 1

a2 3 4

b1 b2

a1 1 2

a2 5 6

=
b1 b2

a1 2 2

a2
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Notation

A potential φ is a table of real numbers over a set of variables, dom(φ).

A table of probabilities is a probability potential.

Multiplication

b1 b2

a1 2 1

a2 3 4

b1 b2

a1 1 2

a2 5 6

=
b1 b2

a1 2 2

a2 15
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Notation

A potential φ is a table of real numbers over a set of variables, dom(φ).

A table of probabilities is a probability potential.

Multiplication

b1 b2

a1 2 1

a2 3 4

b1 b2

a1 1 2

a2 5 6

=
b1 b2

a1 2 2

a2 15 24
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Multiplication of potentials

b1 b2

a1 1 3

a2 4 5

b1 b2

c1 6 7

c2 8 9

=
b1 b2

a1 (_, _) (_, _)

a2 (_, _) (_, _)

φ1(A, B) φ2(C, B) φ3(A, B, C) = φ1(A, B) · φ2(C, B)
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Multiplication of potentials

b1 b2

a1 1 3

a2 4 5

b1 b2

c1 6 7

c2 8 9

=
b1 b2

a1 (6c1 , 8c2 ) (_, _)

a2 (_, _) (_, _)

φ1(A, B) φ2(C, B) φ3(A, B, C) = φ1(A, B) · φ2(C, B)
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Multiplication of potentials

b1 b2

a1 1 3

a2 4 5

b1 b2

c1 6 7

c2 8 9

=
b1 b2

a1 (6c1 , 8c2 ) (21c1 , 27c2 )

a2 (_, _) (_, _)

φ1(A, B) φ2(C, B) φ3(A, B, C) = φ1(A, B) · φ2(C, B)
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Multiplication of potentials

b1 b2

a1 1 3

a2 4 5

b1 b2

c1 6 7

c2 8 9

=
b1 b2

a1 (6c1 , 8c2 ) (21c1 , 27c2)

a2 (24c1 , 32c2 ) (_, _)

φ1(A, B) φ2(C, B) φ3(A, B, C) = φ1(A, B) · φ2(C, B)
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Multiplication of potentials

b1 b2

a1 1 3

a2 4 5

b1 b2

c1 6 7

c2 8 9

=
b1 b2

a1 (6c1 , 8c2 ) (21c1 , 27c2)

a2 (24c1 , 32c2 ) (35c1 , 45c2)

φ1(A, B) φ2(C, B) φ3(A, B, C) = φ1(A, B) · φ2(C, B)
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Marginalization of potentials

X

B

0

B

@

b1 b2

a1 2 3

a2 1 4

1

C

A
=

a1 _
a2 _
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Marginalization of potentials

X

B

0

B
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b1 b2

a1 2 3

a2 1 4

1

C

A
=

a1 5

a2 5
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Marginalization of potentials
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Marginalization of potentials

X

B

0

B

@

b1 b2

a1 2 3

a2 1 4

1

C

A
=

a1 5

a2 5

X

A

0

B

@

b1 b2

a1 2 3

a2 1 4

1

C

A
=

b1 3

b2 7
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