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3.2 Restoration for Binary Symmetric Chanmel Errors

Michael N. Huhns

A previous report [1] has presented and analyzed a technique for
restoring the output of a quantizer so that the result more accurately
matches the gquantizex's input with respect to a mean-square error

criterion. The restoration is obtained by the use of

= pladx
E{x|xeR} = L (1)

f p(x)dx

R

where R is a gegion in N-space to which an N x 1 vector x is assigned
during gquantization, and p(x) is the multidimensional protability
density function cf x. The restcoraticn 1is based essentially upon
exact knowledge of the quantizer output. A similar, Dbut more
difficult problem results when the gquantizer output 1is not known
exactly. This could occur, for example, when the quantizer output is
transmitted over a ngisy channel. The first section in this report
explcres the effect of channel errors on the restoraticns obtained

using eq.(1). The next section examines a technique that
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statistically comgensates for the effect of channel errors.

Effects of Channel Errors on Quantized Signals: In this analysis,

channel errors are assumed to be modelled Eky a binary symmetric
channel (BSC) [2]. The characteristics of this type of channel are
shown in figure 1. The channel is discrete and memoryless and can be
specified by a transition probability assignment P(jlk), for j,k=0,1,

as

p = (2)

Since the channel is memoryless, the probability of an output sequence
ZF(Zl'ZZ""’ZN)' given an input sequence 5=(x1,x2,...,xbg, is given

by

N
p(z|x) =TT p(z |x) (3)
f=1 T

Based on this definition, a BSC was computer simulated with the
channel error probability, p, chosen to be 0.01. The simulated
channel was then applied tc transform coded images. Three images were
zonal transfcre coded in 16 x 16 blocks ani their quantized transforn
domain components were enccded by assigning each a kinary cocde word.

The resulting sequence cf binary digits was operated on by the
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Figure 3,2-1,

Transition probabilities for a binary symmetric channel.

- 26—



simulated channel. The error-corrupted bit stream was then either
decoded directly, as shown in figures 2a, 2c, and 2e, or restored by
the use of eqg. (1) to reduce the effects of the gquantization process.
Figure 3 contajns a schematic of this procedure. The decgded jmages
with the quantization effects reduced are shown in figures 2b, 24, and

2f.

Bit errors in transform coding that arise due to a binary
symmetric channel are seen to result in an emphasis of the block
structure and a saubjeéective error that extends over the entire block.
This latter effect occurs because inverse transforming a block
containing an error distributes this error over all the resultant
image domain ccmgonents. The reconstruction technique implied by eq.
(1) is thus insensitjve to channel errors. Since it provides wisual
and mean-square ergfor improvements in noise-free cases, it can be

utilized egqually well in noisy environments.

Reconstruction of Quantized and Transmitted Signals: The previous

section demonstrated that channel errors do not adversely affect the
performance of the restoration technique derived previously. However,
this technique doeg nothing to ameliorate the effects of the channel
errors. This is because the fundamental restoration formula presented
in eg.{1) vas derived without any consideration of channel structure.
By including the channel structure in the derivation, the resultant
restoration technique can simultaneously reduce the effects of the

quantization process and mitigate the effects of channel errors.
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(a) Quantized 0.5 bit/pixel (b) Restored 0.5 bit/pixel
Pe=0.01 Pe:0.01

(c) Quantized 0.5 bit/pixel (d) Restored 0.5 bit/pixel
Pe=0.01 Pe=0.01

(e) Quantized 0.5 bit/pixel (f) Restored 0.5 bit/pixel

P =0.01 P =0.01
e e

Figure 3.2-2. Minimum mean square error restoration of Hadamard
transformed zonal quantized images.
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Figure 3.2-3,

Data system used to model the effects of channel

errors on the quantization restoration process.

-29-



Let the output cf a data source (this output <could consist of
DPCM samples, PCM samples, or transform domain samples) be denoted by

Ef(xl,x ,...,xN) and described by a probability density function p(x).

2
The reconstructicn of x, after x has been quantized to one of M
regions and chanmel-error corrupted, is denoted by £=(zl,22,.;.,zN)
for k=1,2,...,4 (refer to figure 3). The mean-square error that

results from this process is

M M
5=, p(m|k)f (x-z,) (E-gk)Tp(:Qgg (4
k=1m=1 Rm

This error can te minimized by proper <choice of the restoration
pecints, Z) - Setting the partial derjvatives of this erroz with

respect to z; egual to zero yields

Mz

p(mlk)'/l; xp(x)dx
m

L (5)

Mz P

p(mlk)_é p(x)dx
1

m

for k=1,2,...,M. This expression is the noisy channel vwversion of
eg. (1) and provides a minimum mean-square a2rror estimate of the input
to a quantizer Ltased on the ocutput of a noisy channel, the
characteristics of the quantizer, and the a priori statistics of the
input. This equation is also a multidimensional version of a sEesult
first derived in [3]. PFor a noiseless channel, the channel matrix P

becomes the identity matrix and eq. (5) reduces to eq.{(1). ¥®When the

-30-



probability vcluame integrals in the denominator of 2q. (5) are all

equal, which is agproximately true for Max

restoration equatjon simplifies to

f xp(x)dx
R
2y = 3, plm|k) —=
m=1 jg p(x)dx
m
or
M
2: p:mlk
m=1

where ynlis given by eg.(1). This result holds
entropy quantizers and two-level symmetrical

approximately correct for many other types.

A signal that has been guantized and then

gquantization, the

(6)

(7

for maximum output

quantizers, and 1is

transmitted over a

noisy channel can thus be cptimally restored by utilizing eqg.(5)« The

restoration scluticns found earlier for Gaussian and Laplacian

probability density functions (see [4] ani [5],

respectively) can be

substituted directly into eq. (5) once the transition matriy £for the

channel has been determined. The resultant estimator can then be used

to restore the cwutputs of transform and DPCY coders that have been

degradel by channel errors.
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