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3.5 Transform Domain Spectrum Interpolation

Michael N. Huhns

Qué.ntization occurs whenever continuous physical properties are
represented numerically. A quantizer is a zero-memory nonlinear device
which restricts an input variable to a finite number of possible output
regions., This process is irreversible and information is invariably
destroyed since only the region containing the input is known at the output.
However this output data can be combined with a priori knowledge about
the input to reduce the amount of information lost by interpolating between

the discrete outputs.

In transform image coding a block of image pixels undergoes a two

dimensional transformation using a unitary transform such as the Fourier,
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all values in between. Expanding the determinant of T(n+1) in terms of

the last row and the last column gives an expression for the determinant of
T(N+1) in terms of F(0), F(1), ..., F(N+1). Since F(0), F(l),..., F(N) are
known, this is an expression for the determinant of T(N+l) in terms of
F(N+1), Choosing F(N+1l) to maximize the determinant of T(N+1) gives a
recursive algorithm to estimate F(N+1) from F(0), F(1),..., F(N). The
recursive algorithm can be used further to estimate F(N+2) from L),...,

F(N) and the estimated value of F(N+1) i.e.

ARF(]j-k|) for j = N+1,...M-1 (2)

N
FG) o=

k=1

where A(k), k =1,...,N, are a set of fixed constants specified by matrix

T(N+1).

Extrapolation of Images The positive extrapolation technique discussed

for one-dimensional signals in the previous section can be generalized to
extrapolate two-dimensional spectral density functions as well as two-
dimensional Fourier transform of images. This is achieved by extending

eq. (2) to functions of two variables by letting
N N
F(i,j) = 2 : §:A<k,£>F<li-z |, 15-x) for i,j = 0,1,...,M-1 (3)
k=1 £=1

where F(i, j) is the two-dimensional discrete Fourier transform of the image
and consists of M2 elements. At the receiver site (N+1)2 elements are
available and these (N+1)Z elements are used to extrapolate the missing
elements prior to taking the inverse Fourier transform to obtain a re-
construction of the original image. Analogous to the one-dimensional
system, the original picture is first folded along the x = 0 and y = 0 axes

to generate an even two-dimensional array. This is required to make ¥, 3
an array of real elements. Solving eq. (3) for A(k,£) is straightforward

2 .
since (N+1) values of F(i, j) are known.
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Hadamard, or Slant transform. Next, the transform coefficients are
quantized and coded for transmission. Figure 1 illustrates a typical bit
assignment for a zonal quantization and coding algorithm. The number of

quantization levels assigned to the coefficient at coordinate (u,v) is

b(u, v)

M(u,v) = 2 (1)

where b(u, v) denotes the bit assignment, At the receiver, the quantized
coefficients are reconstructed and an inverse transformation is performed

to obtain an image estimate.

If a transform coefficient is quantized to zero bits, then its restoration
is equivalent to a spectrum extrapolation as outlined by Pratt [1] . Those
coefficients that are quantized to two or more levels can also be restored by

a technique called spectrum interpolation.

Analysis Let the N element column vector x with probability density
px(§_) denote a vector of input data samples. For two-dimensional data arrays,
x is formed by column scanning the data array. Each data sample is quantized
into one of M output regions, denoted by Di’ i=1,2,...,M. The estimated
value of xbased upon the observed Di regions is the quantizer output vector

¥, The average error in this estimate is then defined as
M
§= [ elx-y,)p, (x1ax (2)
. D,
i=1 i

where e(-) is an arbitrary error weighting criterion. The vector of estimates
Y. should be chosen to minimize the average error. This choice can be
determined by utilizing the principles of calculus to find the stationary

points of the error surface § with respect to each Y, Hence

oé d
S0 = - le(x-y.))p_(x)dx i=1,2,...,M  (3)
By_,l JD Bxi ¥,/ Py .
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88888877666605555

8887664444443333

8875543322222222

g8753332211111111
8653321111111111

8643221111111111
7432111100000000
7432111100000000
6421110000000000
6421110000000000
6421110000000000
6421110000000000
5321110000000000
5321110000000000
5321110000000000
5321110000000000

Typical transform domain quantizing bit assignment.

Figure 3.5-1.
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with the assumption that the error function e(.) is differentiable. Solving

eq. (3) for the quadratic error criterion

elx-y,) = Trllx-y,)(x-y,) ) (4)

one obtains

by, - tE-n) (5)
which implies that
fD E-yip EHE ~ 0 L By By, i (6)
i
Rearrangement reveals
RN
i
.= i=1,2,.,.,M (7)
5 J p (x)dx
D
or i
y, = Efx|zeD/] (8)

This is an expression for the best nonlinear mean square estimate of x,

given that x lies within region Di'

Now assume that x is distributed according to a Gaussian probability

density function

T ]
p (x) = Kexp{-3x"C "x] (9)

where C 1is the covariance matrix of x and the mean is assumed to be

zero., Also let

D, = {x |xela,b,)} G2 l8 050, N (10)
1 1] J )

Then

-34-



E T -1
[7 2K exp{-1x'C] xldx

Y. = (11)

-1
K exp{-x C_ x)dx

10 Poe| I®

Curry [2] has solved this equation for finely quantized values of Xj’ i. e,

b, - a, <0, i=1,2,...,N (12)
J J J

th
where oj is the standard deviation of the j component of x. His approach
is to approximate the Gaussian density by the first three terms of its Taylor
series expansion about the midpoint of the region D,. The integration can
i

then be performed, with the result that

bta
E{x|xeD,} = (1-AC ") —— (13)
=127 ===’ 2
where
(b.-a,)
i) =%—JT§J— 6kj§ k,j=1,2,...,N (14)

An exact solution can be obtained when the components of X are un-

correlated. In this case the covariance matrix can be expres sed as

2
= o} i =1 oo 1
Ex {Uj kj} k, ] 5 &y 5 N (15)

and much computation reveals that

promemm

2

2
e"bl/zcl _

2 2
= 2
. al/ 01)

e

1

b1 a

— -erf
erf ﬁol er ﬁol

2 g
Yy, = ’/F . (16)
2 2 2
o -bN/ZoN ) —aN/ZGN)
erf bN erf aN
B A/Z
JZ oy N
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Gaussian variables which had been decorrelated by means of a Karhunen-Loeve
transformation and then quantized could be restored according to a minimum

mean square error criterion by utilizing this last equation.

An exact analytical solution to eq. (11) also exists when an estimate
of a single vector component, X\ is desired based upon two types of inform-
ation -- (a) the other components, xl’XZ’ o 1o 1 0g XN-I’ which are known
completely (quantized with an infinite number of bits); (b) the quantizer output

which nonlinearly specifies the interval containing xN. To derive this, consider

- - . = . < x <
¥ E{§|x1 By Xy S A, e, X ) T ay Ay S X bN} (17)
or
a1 . al
J‘ - exp {-z(@a;...ay x)C | . dx
D, ’ ;
i aN-l aN-l
x x
y = N . (18)
a
-1 l
r exp —%(a1 "aN-lxN)gx . dx
D e
i aN-l
*N
or
b al al
N . 1 -
. exp —g(al. 'aN-lxN)gx . dXN
aN aN_1 aN-l
x x
N r
= 1
¥ . 2 (19)
N -1
j exp |-2(ay. a1 XS, | By
a
N aN-l
*N

-1
Now denote the elements of (C ) by
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11 12 IN
-1 21 T22 't Ton

) = (20)
N1 N2z o NN

Then performing the one-dimensional integrations in eq. (19) yields

%1
22
aN-l
1 N-1 2 bN
-exp { - r X _ 4+ a.r
2 N N N
NN\ Y — ) )
Y - N-1 by X
— rNNxN + aJrJN
LT erf j=1
2 Jer N‘
N

N
If XN is quantized to an infinite number of bits, then ¥y, =

a__=b_,
N N
as expected. If XN is quantized to zero bits, its interval is the real line

(-aN = bN = @), and then its estimate, yl,l\I, is
N 1 A=l
V. — - a.r, (22)
i NN E : j jN
j=1

This result is identical to that obtained by Pratt [1-[ in estimating an
unknown spectral value based on known spectral components. However

eq. (20) is a more general result in that it can be utilized to estimate
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components that have been quantized to any number of bits by an arbitrary

quantization scheme.

Transform Domain Spectrum Interpolation The above solution is

applicable to the mean square restoration of zonal coded transform samples.
In this case, the transform samples have a Gaussian distribution, since each
is the sum of a large number of random variables so that the central limit
theorem can be invoked. These transform samples are typically quantized
according to a bit assignment such as the one shown in Figure 1, For such
a quantizing scheme, only eq. (16) can be utilized directly for restoration;
however this equation ignores the known correlation existing between the
samples., Curry's method of eq. (13) is unable to restore samples quantized
to fewer than two bits. However, for greater bit assignments, it has the
advantage of providing a simultaneous solution utilizing all the available
information. The technique developed in eqs. (17) to (21) avoids the above
difficulties, but requires a recursive solution which may be only asymptotically
optimal (further analysis is expected to establish this). Therefore the best
restoration, on the basis of optimality and ease of implementation, is obtained
from a combination of the solutions presented above and must be adapted to
the particular quantizer used. This technique will soon be applied to zonal
transform coded images. It is anticipated that the resultant image will have
a lower mean square error and improved subjective quality.
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