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3. 5 Transforrn Dornain Spectrurn Interpolation

Michael N. Huhns

Quantization occurs whenever continuous physical properties are

represented nurnerical-ly. A quantizer is a zero-rnernory nonlinear device

which restricts an input variable to a firite nurnber of possible output

regions. This process is irreversibLe and inforrnation is invariably

destroyed since only the region containing the input is known at the output.

However this output data can be cornbined with a priori knowledge about

the input"to reduce the arnount of inforrnation lost by interpolating between

the discrete outputs.

In transforrn irnage coding a block of irnage pixels undergoes a two

dirnensional transforrnation usi.ng a unitary transforrn such as the Fourier,
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a1l values in between. Expanding the deterrninant of J(n+1) in terrns of

the last row and the last colurnn gives an expression for the deterrninant of

I(N+1) in terrns of F(0), F(1), ..., F(N+I). Since F(0), F(1),..., F(N) are

known, this is an expression for the deterrninant of !(N+l) in terrns of

F(N+1). Choosing F(N+t ) to rnaxirnize the deterrninant of T(N+1) gives a

recursive algorithrn to estirnate I'(N+l)*frorn F(0), F(1),..., F(N). The

recursive algorithrn can be used further to estirnate F(N+2) frorn F(l),...,

F(N) and the estirnated value of F(N+1) i. e.

N
F(j) = t A(k)F(l:-tl) for j=N+1,...M-I

/-J
k=I

where A(k), k = I, . . .,N, are a set of fixed constants specified by rnatrix

q(N+l ).

Extrapolation of lrnages The positive extrapolation technique discussed

for one-dirnensional signals in the previous section can be genetaLized to

extrapolate two-dirnensional spectral density functions as well as two-

dirnensional Fourier transforln 6f irnages. This is achieved by extending

eq. (2) to functions of two variables by letting
NN

F(i,j) = tEA1t,l)F(li-zl,li-tll rori,j=0, 1,...,M-l (3)

k=1 I'=l

where tr. (i, j) is the two-dirnensional discrete Fourier transforrn of the irnage

and consists of M2 elernents. At the receiver site (N+l)2.letter.ts are

available and these (N+l)Z elernents are used to extrapolate the rnissing

elernents prior to taking the inverse Fourier transforrn to obtain a re-

construction of the original irnage. AnaLogous to the one-dirnensional

systern, the original picture is first folded along the x = 0 and Y = 0 axes

to generate an even two-dirnensional array. This is required to rnake F(i, j)

'a1_ array of real elernents. Solving eq. (3) for A(k,l) is straightforward
)

since 0.{+1)- values of F(i, j) are known.

(2\

-27 -



Hadarnard, or Slant transforrn. Next, the transforrn coefficients are

quantized and coded for transrnission. Figure I illustrates a typical bit

assignrnent for a zonal qttantization and coding algorithrn. The nurnber of

quantization levels assigned to the coefficient at coordinate (u,v) is

. M(u, v) - ,b(u' v) (1)

where b(u,v) denotes the bit assignrnent. At the receiver, the quantized

coefficients are reconstructed and an inverse transforrnation is perforrned

to obtain an irnage estirnate.

If a transforrn coefficient is quantized to zero bits, then its restoration

is equivalent to a spectrurn extrapolation as outlined by Pratt II]. Those

coefficients that are quantized to two or rrrore levels can also be restored by

a technique calLed spectrurn interpolation.

Analvsis Let the N eLernent colurnn vector >< with probability density

p (x) denote a vector of input data sarnptes. For two-dirnensional data arrays,-x-
x is forrned by colurnn scanning the data array. Each data sarnple is quantized

into one of M output regions, denoted by D., i = 1, Zr...,M' The estirnated

value of xbased upon the observed D. regions is the quantizer output vector

y.. The average error in this estirnate is then defined as
-t

where e(. ) is an arbitrary error weighting criterion. The vector of estirnates

v- should be chosen to rninirnize the average error. This choice can be
*L

deterrnined by utilizing the principles of calculus to find the stationary

points of the error surface d with respect to each q' Hence

(z\6 = 
$ L."(r-q)n*(x)dx

b6rd
- 

= -l 
-fe(x-v.)lp 

(x)dx i= I,?.,...,M (3)
dv. J- dv. -'--r --x--4D. -.i

1
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8888887766665555
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865 33211r1I11111
8643221111111111
7432l-Ll100000000
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6421110000000000
6421110000000000
6421110000000000
6421r10000000000
53211r0000000000
5321110000000000
5 3.2 1 1 I 0 0 0 0 0 0 0 0 0 0

5 3 2 r 1r o o o o o o 0 0 o o

.*$

Figure 3. 5-1. Typical transforrn dornain quantizing bit assignrnent.
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with the assurnption that the error function e(. ) is

eq. (3) for the quadratic error criterion

e(x-yu) = Trtt*-&){*-q)T}
one obtains

differentiable. Solving

i = 1, Zr...,M

i = 11 2r... rM

de
dv..1

which irnplies that

F

I (*-v.)p (x)dx - 0,D. - 1.-x-
1

Rear rangernent r eveals

c
I *p (x)dx
'D. -*-

1

(4)

(5)

(6)

(7)y.=
-1

J . 
n*(s)a5

1or

y. = E[i! lxe D- ] lel
-I 1

This is an expression for the best nonlinear rrrean square estirnate of 5,
given that x lies within region D..

lilow asslune that x is distributed according to a Gaussian probability

density function

(e)n*(x) = K exp[-*:"g*t*]

where C is the covariance rnatrix of x and the rrlean is assurned to be
-<zero. Also let

D. = [K.l*.eIa.,b.)]1 1' J - J J

j = Ir2,...,N ( 10)

Then
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IN
a

xK expl -**Tc- I*ld*
---<-

i

Curry IZl ftas solved this equation for

b. - a. <o.
JJJ

finely quantized values of x., i. e.

j = 1,2,...,N (l?l

(i3)

(1 1)

k,j = L,2,...,N (14)

k, j = 1r2,...,N (15 )

(16 )

v.=
-L

where o. is the standard deviation of the jth 
"ottponent 

of x. His approach
J

is to approxirnate the Gaussian d.ensity by the first three terrns of its Taylor

series expansion about the midpoint of the region D.. The integration can

then be perforrned, with the result that

., b*"
Ef x lxe D.I = (r -AC-') -;-

1 ---< L

where z
(b. -a. ) )lr o It2 kjlA=

An exact solution can be obtained when the cornponents of x are un-

correlated. In this case the covariance rnatrix can be expressed as

c = [o?0. .]
-< JKJ

and rnuch cornPutation reveals that

'o rt"-o" 
t'ol - "-"?,tzo?l

b_

erf #, - erf "r
J2ot

IT
&=n/;

-o*(e-t(,12"fr - "-"fr 
lzofr,

L:'"t 'err 
'o
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Gaussian variables which had been decorrelated by rneans of a Karhunen-Loeve

transforrnation and then quantized could be restored according to a rninirnurn
rrrean square error criterion by utilizing this last equation.

An exact analytical solution to eq. (11)also exists when an estirnate
of a single vector cornponent, xN, is des"ired based upon fwo types of inforrn-
ation -- (a) the other cornponents, xy x2,...,*N-1, which are known

cornpletely (quantized with an infinite nurnber of bits); (b) the quantizer output

which nonlinearly specifies the interval containing *N. To derive this, consider

q - E[Il*t = ^r, *z = ^2,...,*N_I = "N_ti aN = **.bN1 1rz)

or

\=

Y.=
-1

r3' \"x
exp

tbN
J "*PtN

I",- f ,' \.-"
"* 

\"1 /

(l; ),)".,

[; )l-

li)
I
D.

1

-*("r..."N-r"w)$ dx

-*(.r..."N_r**)it dx

-*(.r...aN_r**)S*'

(l B)

(19 )

-*("r...aN_r**)g=t &*

Now denote the elernents of (C--)- 
t 

O"

"1

;
N

*N
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-1(c)

"I l

"zl

"Nl

"rz

'zz

"Nz

"rN

"zN

l**

(z0l

(zz)

Then perforrning the one-dirnensional integrations in eq. (1t) yields

"I
^z

l*_,

y.=
-t N.I

x +FNN 2
:-lJ-r

^/T|=-"NN

"NNa.r.
JJTTT

NN
2

erf

Ny. = -
1 tNN

'NN*N 
- t "j'j*

)

If x* is quantized.to an infinite nurnber of bits, then yI = "N = bN,

as expected. If x* is quantized to zero bits, its interval is the real line

(-"N = b* = -), and then its estirn"t., yI, i"

N-1
S ar
L JJN
j=l

This result is identical to that obtained by Pratt [1] in estirnating an

unknown spectral value based on known spectral cornponents. However

eq. (20) is a rnore general result in that it can be utilized to estirnate

e
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components that have been quantized to any nurnber of bits by an arbitrary
quantization scherne.

Transforrn Dornain Spectrurn Interpolation The above solution is

applicable to the rnean square restoration of zonal coded transforrn sarnples.

In this case, the transforrn sarnples hav^e a Gaussian distribution, since each

is the surn of a large nurnber of randorn variables so that the central lirnit
theorern can be invoked. These transforrn sarnples are typically quantized

according to a bit assignrnent such as the one shown in Figure l. For such

a quantizing scherne, only eq. (I6) can be utilized directly for restoration;

however this equation ignores the known correl,ation existing between the

sarnples. Curryrs rnethod of eq. (I3) is unable to restore sarnples quantized

to fewer than two bits. F{owever, for greater bit assignrnents, it has the

advantage of providing a sirnultaneous solution utilizing aLl the available

inforrnation. The technique developed in eqs. (17) to (21) avoids the above

difficulties, but requires a recursive solution which rnay be only asyrnptotically

optirnal (further analysis is expected to establish this). Therefore the best

restoration, on the basis of optirnality and ease of irnplernentation, is obtained

frorn a cornbination of the solutions presented above and rnust be adapted to

the particular quantizer used. This technique will soon be applied to zonal

transforrn coded irnages. It is anticipated that the resultant irnage will have

a lower rrrean square error and irnproved subjective quality.
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