A Two-layer Learning System for Document Retrieval
in Multiple-User Environments

by

U. Mukhopadhyay, M. N. Huhns, R. D. Bonnell and L. M. Stephens
Center for Machine Intelligence
University of South Carolina

ABSTRACT

MINDS (Multiple Intelligent Node Document Servers) 1is a
distributed system of knowledge-based query engines for
efficiently retrieving multimedia documents in an office
environment of distributed workstations. By learning document
distribution patterns, as well as user interests and preferences
during system usage, it customizes document retrievals for each
user. A two-layer learning system has been implemented for
MINDS. The knowledge base used by the query engine is learned at
the lower level with the help of heuristics for assigning credit
and recommending adjustments; these heuristics are incrementally
refined at the upper level.

I. INTRODUCTION

Documents are used in computerized office environments to
store a variety of information. This information 1is often
difficult to wutilize, especially in large offices with
distributed workstations, because users do not have perfect
knowledge of the documents in the system or of the organization
for their storage. The goal of the MINDS project is to develop a
distributed system of intelligent servers that 1) learn
dynamically about document storage patterns throughout the
system, and 2) learn interests and preferences of users so that
searches are efficient and produce relevant documents [1,2]. The
strategy adopted for evaluating a set of learning heuristics that
are applicable to this goal is presented. In particular, this
paper describes the heuristic evaluation testbed, distance
measures for metaknowledge, document migration heuristics,
evidence assimilation techniques, and results of a system
simulation.

II. DISTRIBUTED WORKSTATION ENVIRONMENT
A, Organization of Documents

Queries regarding documents are frequently content-based.
Automatic text-understanding systems could conceivably process
these queries but would be expensive to develop and use.
Document names are not descriptive enough and can not be relied
on exclusively for processing content-based queries. However, a
set of keywords may be used to describe document contents: the
retrieval of documents can then be predicated on these keywords

This research was supported in part by NCR Corporation.

Page 2

as well as other document attributes, such as author, creation
date, and location. Complex qualifiers, which are conjunctions
or disjunctions of predicates on these attributes, may also be
used. Each document is represented by a surrogate containing its
attributes. The document and 1its surrogate are subsequently
updated or deleted as dictated by system usage. Surrogates
occupy only a fraction of the storage space required by the
documents, but usually contain enough information for wusers to
determine whether a document is useful.

Each workstation supports a single user who may query the
system. Documents owned by this user are stored locally but may
be accessed by users at other workstations. Though multiple
copies of documents may be stored in the system, a user may not
have the same name for two of his documents unless they have
different version numbers. Document migration within the system
is allowed and is viewed as a combination of copying a document
by a user and then deleting it from the document base of the
original owner.

Documents are logically organized in a file-cabinet
paradigm. Users own cabinets, each of which contains drawers,
which in turn contain folders with sub-folders and documents in a
hierarchy. The classification of documents in this manner
enables users to narrow down the search space in many instances
and is especially conducive to browsing through documents.

B. The User's Perspective

In typical distributed document management systems,
directories are either «centralized or distributed, with or
without redundancy [3]. However, the directory information is
consistent throughout the system; information 1is stored
redundantly only to reduce directory access time. The algorithm
for document retrieval consists of matching predicates for
retrieval with the document properties stored in the directory.
The documents for which the match 1is successful are then
retrieved from the indicated storage addresses. Since the
directory information 1is consistent throughout the system, the
response to a query is the same without regard to the identity of
the query originator.

In a large system, the response to a query may consist of
many documents, only a few of which may be relevant to that
particular user. Also, the set of documents relevant to a second
user may be quite different from that of the first, even though
their queries are identical. The problem appears to originate
from a lack of specificity in formulating the query. A judicious
choice of predicates would apparently cause all the documents
that are 1irrelevant to the query originator to be rejected.
However, this would require a sophisticated query lanquage, rich
enough to allow the expression of a wuser's short-term and
long-term goals, plans, and interests. A comprehensive framework
for document surrogates, possibly along the lines of semantic
nets, would also be required. Formulating queries would be

Page 3

extremely cumbersome and the increased power of the system would
be offset by the additional effort demanded from the user.

In the absence of any information about the wuser, whether
explicitly stated 1in the query or embedded 1in the system
knowledge base, the response will necessarily consist of a
superset of the sets of relevant documents described by the query
from the perspective of each user. User-transparency in a large
multiple-user environment may thus cause a query response to
contain an arbitrarily large number of irrelevant documents. It
is our view that systems of the future need to maintain models of
their users in a background mode 1in order to make document
searches more efficient and productive without burdening the
user.

MINDS is a distributed document server with some special
characteristics that allow personalized document retrieval.
Additional information, in the form of personalized document
metaknowledge, is stored at each workstation to allow the system
to scan the document bases of all system users 1in a best-first
fashion from the viewpoint of the query originator. Because
MINDS maintains (at each workstation) models of both the current
system state and the local user's document preferences, it is
analogous to a Class C natural language interface [4].

III. QUERY PROCESSING IN MINDS
A, Workstation Interactions

The MINDS system shares tasks, knowledge, and metaknowledge
for cooperation among the workstations. A complex query is
processed by first decomposing it into simpler subtasks, with the
help of locally stored metaknowledge, such that the search space
for a subtask is limited to the documents owned by a system user.
Subtasks are then transmitted to the respective workstations
where they are processed locally. Responses to the subqueries
are transmitted back to the workstation that 1initiated the
subqueries, where the results are synthesized and ranked in
decreasing order of relevance as estimated by the metaknowledge.
If the subquery is content-based, relevant metaknowledge is also
sent to the query originator along with the documents and
surrogates constituting the response to the subquery. The
transmitted metaknowledge may be used for updating the
metaknowledge of the receiver in accordance with the learning
strategy. Activities, such as creating, deleting, and copying
documents, are also performed at each workstation; some of these
functions require cooperation among the workstations. Again,
metaknowledge may be modified as a side-effect of these
activities.

Page 4

B. Metaknowledge

Each metaknowledge element (Figure 1) is a four-tuple with
fields for two users, a keyword, and a certainty factor [0,1].
The metaknowledge element, (Smith, Jones, compiler, 0.8),
represents the following:

"Smith's past experience suggests that the possibility of
finding relevant documents on compilers among those owned by
Jones is high (8 on a scale of 10)."

The certainty factor [5] provides an ordering of the search for
documents. It reflects 1) the breadth of 1information at a
workstation pertaining to a specific keyword, 2) how useful
documents concerning this keyword have proven to be in the past,
and 3) how recently the workstation has acquired its information.
The metaknowledge 1is first initialized with default values of
certainty factors. A set of heuristic learning rules defines the
constraints for modifying these values during system usage.

If a user had metaknowledge for each document rather than
for each user of the system, the knowledge would be precise.
However, the disadvantages of this approach are 1) for an average
of n documents per user, the metaknowledge overhead would be.n
times as much, and 2) for new documents, no prediction of
relevance can be made. On the other hand, there is a positive
correlation among the cluster of documents owned by a particular
user, so that conceptual-level properties may be assigned to this
cluster. Future additions to this cluster would probably have
properties similar to the cluster prototype. For example, the
metaknowledge stored by Smith associating the document base of
Jones with the keyword compiler is a conceptual-level property of
Jones' document base. This property can be exploited by Smith to
facilitate document searches and is therefore stored at Smith's
workstation, rather than at Jones'.

IV. THE LEARNING TESTBED
A. The Learning Cycle

MINDS is being developed for operation in a wide range of
cffice environments. The state of an environment at any instant
of time 1is given by the <content and confiquration of the
metaknowledge and document bases of the system. Commands issued
by users comprise the system inputs, and retrieved documents and
surrogates constitute the outputs. The state of the system may
change as a result of executing a command (6]. The system
dynamics are shown in Figure 2.

A learning testbed has been implemented to develop a robust
body of learning heuristics applicable to any office environment.
In an operational MINDS system, these heuristics are static in
that all refinements are made off-line, primarily because of the
large amount of computation involved. On-line refinement would

Page 5

also require the identification of a body of meta-heuristics for
guiding the refinement process; these are being studied
separately.

The heuristics refinement strategy,.outlined in Figure 3, 1is
to compare the performance of different versions of MINDS, each
implanted with a unique set of learning heuristics. A number of
simulations are run with an 1initial set of heuristics; the
results are evaluated and used by the refinement mechanism to
create a new set, possibly overlapping the previous one. The new

set of heuristics is used for the next simulation, During a
refinement cycle, heuristics may be discarded, added, or modified
based on their influence 1in shaping the metaknowledge. Good

heuristic refinement rules (meta-heuristics) expedite the search
for an optimal set.

Each simulation is run on a data set representing a specific
office environment; the data set consists of an initial database
of documents and their locations, the 1initial metaknowledge of
the users, and a command sequence representing plausible document
transactions. Measurements, which are made periodically during
the course of a simulation, are used to evaluate the performance
of a given set of heuristics. The same set 1is then tested on
other simulated office environments. Based on the evaluations of
each simulation, the heuristics are refined. The modified
heuristics are then evaluated on the same simulated office
environments.

B. Domain Modeling and Knowledge Representation

The practical value of the heuristics developed 1in the
testbed depends on the validity of the office models used in the
simulations. Aan office is described by aggregate descriptors
such as the number of users and the relative frequencies of
certain commands. These descriptors are used to dJenerate a
distributed document base, metaknowledge for each user, and a
command sequence.

Although document retrievals may be based on several types
of predicates such as authorship and location, only content-based
(keyword) retrievals are considered in the simulations since the
other types of retrievals do not modify the metaknowledge.
Commands which do not affect the system state, and thus are not
impertant for learning, are not included.

In an operational MINDS system, documents and surrogates
would be stored in separate data structures at the same
workstation. When a document is moved, its surrogate would also
be moved. Surrogates suffice for the processing of retrievals,
since these commands return only the names and locations of
documents that satisfy the search predicates; actual documents,

however, would have to be used for processing reads. After a
document is read by a wuser, he would be asked to provide a
relevance factor for the document on a [(0,1] scale.

Metaknowledge updates are influenced by this value.

Page 6

In the simulations, frames are employed for capturing a
combined view of the surrogate and the document. Each document
‘has a name and several keywords describing it. All other
attributes in the surrogate model are discarded since all
retrievals in the simulations are keyword-based. A read
operation with a content-based predicate 1is a keyword-based
retrieval that culminates in the reading of one or more documents
from the top of the list of retrieved documents. In an actual
system, a user would then provide a relevance factor for each
document read. If the documents were to be retrieved and read by
another user, the relevance factors would probably be different.
Also, if the same user evaluated the same documents in terms of
some other keyword, the relevance factors would probably be
different. In the simulations, the contents of each document are
not stored, only the relevance factor it would be accorded by
each user in terms of each keyword describing it.

If documents are distributed uniformly such that there 1s no
preferred sequence of workstations to search, the metaknowledge
will not prove helpful. However, instead of employing an
exhaustive search strategy, people in cffices (computerized or
otherwise) always seem to rely on past experiences to order their
searches in a best-first fashion. This suggests that the
distribution of knowledge in offices is not uniform.

The correlation among the documents owned by a particular
user 1is modeled in the testbed by biasing the relevance factors
associated with the documents. For example, if Jones' documents
on compilers are biased from Smith's viewpoint by 0.2, then the
relevance factors associating Smith with compilers 1in documents
owned by Jones will have a uniform distribution between 0.2 and
1.0. A bias of -0.4 would cause a distribution between 0 and
0.6. The bias is mutual in that

BIAS(Smith, Jones, compiler) = BIAS{Jones, Smith, compiler).
A typical document base is shown in Figure 4.

Metaknowledge is also stored in frames as shown in the
example of Figure 5. Each user has metaknowledge which captures
his personal view of the dispersion of relevant documents and
consists of certainty factor assignments for all combinations of
users and keywords, including his view of the documents owned by
himself. A system of n users and m keywords would result in nm
certainty factor assignments in each of the n metaknowledge sets.
Two choices were considered for initializing the metaknowledge at
the start of the experiment. The first, an unbiased assignment
of certainty factors (say 0.5), would initially result in ties
for determining the best locations to search; if the
conflict-resolution strategy 1is to choose the first location to
appear in the list, then the system would tend to learn about
users placed at the top of the list earlier than those placed
near the end. The second initialization strategy is to randomly
allocate certainty factors, possibly with a uniform distribution,
to ensure that the learning progresses in an unbiased fashion.

Page 7

The second strategy was adopted for the simulations reported in
this paper.

C. Metaknowledge Update Heuristics

The metaknowledge updating heuristics are based on the
paradigm of the intelligent office-worker who conducts an ordered
search for documents based on past experiences 1in the office
environment. When Smith asks Jones for documents on compilers
and Jones provides one or more documents that are relevant to
him, Smith learns that Jones' document base is likely to continue
having useful documents on compilers in the future. If Jones has
no documents on compilers, or 1if none of the documents on
compilers are relevant to him, Smith will learn that this may not
be a good place to search for documents on compilers in the
future. In either case, Jones may assume that Smith will
continue searching other 1locations and acquire documents on
compilers from some other wuser. Consequently, Jones will
increase his belief 1in Smith's ability to provide documents on
compilers in the future. This increase in belief will probably
not be large since Smith's newly acquired knowledge on compilers
may not be of the type relevant to Jones.

1. 1Initial Set of Heuristics

Move and copy commands do not explicitly appear 1in the
command sequence for this set of simulations. They are, however,
in some of the learning heuristics for document migration. The
results reported here were generated by the following set of
heuristics:

Heuristic 1. (also applicable for the DELETE part of MOVE)
IF a document is deleted
THEN no metaknowledge is changed

Heuristic 2.
IF a document is created by userl
THEN metaknowledge of userl about userl
regarding each keyword of the document
is increased to 1.0 (the maximum
relevance).

Heuristic 3.

IF a retrieve command predicated on keywordl
is issued by userl

AND at least one user2 surrogate contains
keywordl

THEN (a) userl metaknowledge about user2 regarding
keywordl is increased (weight 0.1)
(b) user2 metaknowledge about userl regarding
keywordl is increased (weight 0.1)

Page -8

Heuristic 4.

IF a retrieve command predicated on keywordl
is issued by userl

AND no user2 surrogate contains keywordl

THEN (a) userl metaknowledge about user2 regarding
keywordl is decreased to zero
(b) user2 metaknowledge about userl regarding
keywordl is increased (weight 0.1)

Heuristic 5.

IF a read command predicated on keywordl 1is
issued by userl

AND no user2 document contains keywordl

THEN (a) userl metaknowledge about user2 regarding
keywordl is decreased to zero '
(b) user2 metaknowledge about userl regarding
keywordl is increased (weight 0.1)

Heuristic 6.

IF a read command predicated on keywordl is
issued by userl

AND at least one user2 document contains keywordl

THEN (a) userl metaknowledge about user2 regarding
keywordl is changed, based on the highest relevance
of all user2 documents regarding keywordl.
(b) user2 metaknowledge about userl regarding
keywordl is increased (weight 0.1)

Heuristic 7.

IF a read command predicated on keywordl is
issued by userl

AND documentl owned by user2 contains keywordl

AND the relevance of documentl to userl by way
of keywordl exceeds the move_copy threshold

AND userl does not have documentl

THEN (a) userl copies documentl from user?
(b) metaknowledge of userl about userl regarding
keywordl of the document is increased to 1.0

Heuristic 8.

IF a read command predicated on keywordl 1is
issued by userl

AND wuserl has copied documentl from user?2

AND the maximum relevance of documentl to
user2 by way of any keyword is less
than the delete_threshold

THEN documentl is deleted from the document
base of user?2

These heuristics have also been written in first-order logic and
as OPS5 rules for implementation purposes.

Page 9 .

2. Assimilation of Evidence

The learning heuristics shown above enable the metaknowledge
to be changed on the basis of new evidence which typically
consists of the relevance rating of a document, the observation
of a document being copied, etc. The metaknowledge updating
scheme should be able to take into account

a. temporal precedence -- the system is dynamic and therefore
recently acquired evidence is more indicative of the current
state of the system than evidence acquired earlier. If fl is
the mapping function for a downward revision of the certainty
factor (contradiction) and f2 is the mapping function for an
upward revision (confirmation), then f2(fl(x)) > f1(f2(x)),
for all 0 < x < 1 (Figure 6).

b. reliability of evidence -- some types of evidence are more
reliable than others. If a surrogate with a desired keyword
is successfully retrieved by Jones from Smith, this action by
itself does not completely support the proposition that
Smith's documents on compilers are going to prove relevant to
Jones in the future, since the relevance of this document to
Jones is not known. However, if this document 1is read by
Jones, then the relevance value assigned by him constitutes
reliable evidence. The reliability of the source 1is also
important for evaluating the metaknowledge sent by a user.
Wwhen Smith offers metaknowledge to Jones about documents on
compilers, Jones will pay heed to it only if he has found
Smith to be a reliable source of documents on compilers 1in
the past.

c. degree of support -- the degree of support for a proposition
may vary. When a user is asked if the document he has read
1s relevant to him, his answer does not have to be limited to
"yes" or "no" but may be a value in the range [0,1].

d. saturation characteristics -- when the 1initial certainty
factor for a metaknowledge element 1is high, additional
confirmatory evidence will not change (increase) it
substantially. However, if the evidence were to be
contradictory, the change (decrease) in confidence factor
would be high wunder the same 1initial condition. The

situation is exactly reversed when the initial certainty
factor is low.

The metaknowledge updating scheme presented here has all
these features and is based on two functions that map the current
certainty factor to a new one (Figure 6). The first function
deals with confirmatory evidence that causes upward revision
while the second one deals with contradictory evidence that

causes downward revision. When a surrogate with a keyword is
retrieved successfully, the revised certainty factor is given by
(1-r) * x + r * (£2(x)), where £f2 is the function dealing with

upward revision, x is the original certainty factor, and r is the

Page 10

reliability of this type of information (typically 0.1). When
the evidence supports a proposition to a degree of 0.7 (say), the
mapping function 1is the weighted average of the two orlglnal
functions in the ratio 0.7:0.3 (see Figure 7).

D. Heuristic Distance Measure and Learning Curves

A heuristic function is used to compute how much the current
metaknowledge differs from the 1ideal metaknowledge for a
particular description of the system state. The actual search
sequence adopted by a wuser for a keyword-based search would
depend on his metaknowledge; individual document bases would be
scanned in decreasing order of certainty factors. These
sequences are first computed from the current metaknowledge base
for all search-pairs (user, keyword).

The ideal search sequences, on the other hand, are obtained
from the current document base. For reasons explained earlier,
documents in the simulated environment are augmented with the
relevance factor assignments they would have elicited from users
reading them. The best sequences for conducting keyword-based
searches are obtained from this informatiocon.

The two sets of search sequences are now compared. If the
two search sequences for a given search-pair are similar, the
distance between them is small. One measure of disorder 1in a
list 1is the number of exchanges between adjacent list elements
required by a bubble-sort procedure to derive an ordered list.
In this case the initial 1list 1is an actual search sequence
derived from the metaknowledge, and the final ordered list is the
ideal search sequence obtained from the document base. The
measure of disorder of all the search-pairs are added together in
order to obtain the total distance measure between the current
and ideal metaknowledge patterns.

The heuristic distance is measured at the beginning of each
simulation and after each measurement cycle of ten transactions.
For the simulation results shown in Figures g8-11, 450
transactions (commands) were executed and a total of 46
measurements were made. Though the learning heuristics for these
simulations were kept unchanged, different office models and
usage patterns were employed. The graph of the distance
measurements as a function of the number of transactions produces
the learning curve for a particular office environment and
particular set of 1learning heuristics. Properties of these
graphs, such as time-constants and steady-state values, are being
used to evaluate the performance of the heuristics in order to
derive meta-heuristics.

V. THE MULTI-LAYERED LEARNING SYSTEM MODEL
Buchanan et al. [7] have proposed a general model for a

learning system (LS) based on four functional components, the
performance element, the learning element, the critic, and the

Page 11

instance selector. Each component has bidirectional
communication links to a blackboard containing the knowledge base
as well as all temporary information used by the learning system
components.

The performance element is responsible for generating an
output in response to each new stimulus. The instance selector
draws suitable training instances from the environment and
presents them to the performance element. The critic evaluates
the output of the performance element in terms of a performance
metric and suggests adjustments to the learning element, which
makes appropriate changes to the knowledge base. The LS operates
within the constraints of a world model which is the conceptual
framework of the system with assumptions and methods for domain
activity and domain-specific heuristics [8].

The world model can not be modified by the LS that uses 1it,
but it may be altered by a higher-level system based on the
observed performance of the LS. This system may 1itself be a
learning system. Incremental refinement of the world model can
thus be accomplished in a higher-level learning system (LS2)
whose performance element 1is the learning system at the lower
level (LS1). Several well-known LS's have been characterized
using Buchanan's framework [7,9].

Dietterich et al. [10] have developed a simple model of
learning systems that incorporates feedback from the performance
element to the learning element. The included knowledge base is
not specified ras a blackboard. Their model has been used to
examine the factors that affect the design of the learning
element.

The MINDS two-level testbed for heuristic refinement has

been mapped into an integrated framework, combining features of
both of the above general models. This framework is shown below:

The User Layer

Goal: Learn to customize document searches for individual users
in a dynamic setting.

The Upper Layer (LS2, Figure 13)

Purpose: Improve the performance of LS1 by selecting a good set
of learning heuristics.

Environment: All command sequences, initial metaknowledge
configurations -and 1initial document distributions
that comprise the training set.

Instance Selector: Chooses an interesting environment (a
combination of command sequence,
metaknowledge configuration, and document

Critic:

Page 12

distribution) with help from the critic.

Evaluation. Uses meta-heuristics (presently supplied by
a knowledge engineer) to analyze learning curves for LS1
with the current set of learning heuristics.

Diagnosis. Singles out heuristics that are not useful.
Therapy. Selects new heuristics to replace useless ones
or suggests modifications for existing ones. Also
suggests interesting environments for testing a new set
of heuristics.

Learning Element: Redefines the current set of heuristics as

recommended by the critic.

World Model: The LS1 world model along with the set of

meta-heuristics for wupdating the LS1 heuristics,
the method for evaluating the performance of LS1,
and the scheme for heuristic updating.

The Lower Layer (LS1, Figure 12)

Purpose:

For each user learn a good set of confidence factor
assignments to predict the outcomes of all
keyword-based searches of individually-owned document
bases.

Environment: Set of all possible combinations of document

distributions and user commands.

Performance Element: Uses the document metaknowledge (set of

confidence factor assignments) to plan a
document base search sequence for a user.
Also executes some non-search commands
which may change the document distribution
pattern.

Instance Selector: The next command is read from a predefined

Critics

sequence of commands. The document
distribution pattern chosen to be part of the
environment for the execution of a command is
simply the document configuration arrived at
after execution of the last command.

Evaluation. Examines the result of searching a target
document base with the help of some learning heuristics.
Diagnosis. Determines that the document bases be
searched in the order that would have proved most
fruitful as determined from the results.

Therapy. Recommends increases and/or decreases of
certainty factors.

Learning Element: Adjusts the certainty factors in the document

metaknowledge base according to the critic's
recommendation.

Page 13

World Model: Representations of the document base, knowledge
base and commands, the metaknowledge wupdating
scheme, and the learning heuristics for the
evaluation of results and recommendation of
therapies.

VI. CONCLUSIONS AND PLANS

The learning testbed has provided a wuseful tool for
developing heuristics for learning the document storage patterns
from the perspective of individual wusers in a variety of
distributed office environments. Offices are modeled on the
basis of higher-level descriptions which are used to generate a
distributed document base and a plausible transaction sequence
for the office and to initialize the metaknowledge for each user.

Simulations are run for these office environments and the
resulting learning curves are analyzed by a knowledge engineer,
who tries to correlate the heuristics with the results. A better
set of heuristics may be identified after several iterations. A
search strategy is required for rapid convergence to an optimal
set of heuristics for a given office environment. Part of the
current research effort is to identify meta-heuristics that would
help refine existing heuristics, as well as discover new ones.

REFERENCES

1. R. D. Bonnell, M. N. Huhns, L. M., Stephens, and
U. Mukhopadhyay, "MINDS: Multiple Intelligent Node Document
Servers," Proceedings IEEE First International Conference on
Office Automation, December 1984, pp. 125-136.

2. , "A Distributed Expert System Approach to the
Intelligent Filing System," USCMI Technical Report 84-17,
University of South Carolina, November 1984.

3. J. B. Rothnie and N. Goodman, "A Survey of Research and
Development 1in Distributed Database Management," Proceedings
IEEE Third International Conference on Very Large Data Bases,
1977, pp. 30-44.

4. G. Hendrix and E. Sacerdoti, "Natural Language Processing:
The Field in Perspective," BYTE Magazine, September 1981,
pp. 304-352.

5. B. G. Buchanan and E. H. Shortliffe, "Reasoning Under
Uncertainty,” Rule-Based Expert Systems, Part Four,

Addison-Wesley Publishing Co., Reading, MA, 1984.

6. D. B. Lenat, F. Hayes-Roth, and P. Klahr, "Cognitive Economy
In a Fluid Task Environment,” Proceedings of the
International Machine Learning Workshop, R. S. Michalski,

10.

11.

12.

13.

Page 14

(Ed.), Dept. of Computer Science, University of Illinois,
Urbana, IL, 1983.

B. G. Buchanan, T. M. Mitchell, ~ R. G. Smith and
C. R. Johnson, Jr., "Models of Learning Systems,"
Encyclopedia of Computer Science and Technology, Vol. 11,
J. Belzer, A. G. Holzman and A. Kent, (Eds.), Marcel Dekker
Inc., New York, 1977, pp. 24-51.

P. H. Winston, "Learning Structural Descriptions from
Examples,” The Psychology of Computer Vision, McGraw-Hill,
New York, 1975, pp. 157-210.

L. A. Rendell, "Conceptual Knowledge Acquisition in Search,”
Knowledge Based Learning Systems, L. Bolc (ed.),
Springer-Verlag, New York, to appear.

T. G. Dietterich, B. London, K. Clarkson, and G, Dromey,
"Learning and Inductive Inference,” Ch. XIV, The Handbook of

Artificial Intelligence, Vol. 3, P. R. Cohen and
E. A. Feigenbaum (Eds.), William Kaufmann, Inc., Los Altos,
Ca, 1982.

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell (Eds.),
Machine Learning: An Artificial Intelligence Approach, Tioga
Publishing Co., Palo Alto, CA, 1983.

R. C. Schank and P. G. Childers, "The Learning Barrier," The
Cognitive Computer, Ch. 8, Addison-Wesley Publishing Co.,
Reading, MA, 1984.

T. G. Dietterich and R. S. Michalski, "Learning and
Generalization of Characteristic Descriptions: Evaluation
Criteria and Comparative Review of Selected Methods, "
Proceedings of the Sixth International Joint Conference on
Artificial Intelligence, 1979, pp. 223-231.

Page 15

(Tdocument-name) (TUser-name)

ID
Nésl
<< docs. USERS
\\\/// M P

| DOCUMENTS

L\

< con- >

("keyname) \iin;//
N R,

meta-

CANDIDATE- <——<1s a PRIMARY know- >
KEYWORDS KEYWORDS \{idj//
\ l

<subkey>

(certainty-factor)

/\

<syno- >
YV
Note: Most non-key attributes have been removed for clarity.

Figure 1. Entity-Relationship Diagram for the
Metaknowledge of the System

.Page 16

x(k) y(k)
> Query ' >
Input > Engine | Output
(command)

(retrieved
documents and
surrogates)

Knowledge < Fp—d
Acquisition
Expert -
Document base
and
h(k) Metaknowledge

Output function: y(k) = g x(k), h(k})

State function: h(k+1l) = a(x(k), h(k))

Figure 2. Block Diagram of System Dynamics

Page 17

Set up heuristics

Set up data set

Start transaction

Update documents

Update metaknowledge

End transaction

If no. of transactions since last measurement

is less than limit go to 3, else continue

. Make measurement
If no. of measurements for this data set is
less than limit go to 3, else continue

. Evaluate measurements

vV V V

NN WM

o W

1

—
-

. If no. of data sets for this simulation is
less than limit go to 2, else continue
12. Evaluate and compare observations

13. If performance of heuristics is not
satisfactory, then go to 1, else STOP.

Figure 3. The Heuristics Refinement Cycle

((userl
(doc27 (keyl3
(key7
(key5
(doc28 (key0
(keyll
(user3
(doc37 (keylO
(keyl4d

Figure 4.

(obj _userl
(obj userl
(obj userl
(obj_userl
(obj_userl

(obj_userl
(obj_userl

(obj _user2
(obj user?2

(obj user2
(obj user2

0.0)
0.7)
0.7) (obj user?2
0.1)
0.2)

0.6)(obj_user2
0.6)(

obj user2

obj_user3
obj user3

obj user3
obj _ “user3

0.1)(
0.2)(
1.0)(obj user3
0.4)(
0.1)(

0.5) (obj_user3
0.3)(

obj_user3

[en N an]
. .

OO O0OOoOOo
L

. Page 18

....

TO W UTW

Nt vt vt v’ ot

gt st N Vgt s
el

Document Base Representation in the Testbed

((userl (keyQ (obj userl 0.4)
(keyl (obj_userl 0.9)

(key9 (obj_userl 0.2)

(user3 (key0 {(obj_userl 0.1)

(key9 (obj userl 0.9)

Figure 5. Metaknowledge

(obj user?2
(obj_user2

(obj _user2

(obj user2

(obj _user2

.2)

.6)

.0)

Page 19

(obj_user3 0.4))
(obj_user3 0.7))

(obj_user3 0.5)))

(obj_user3 0.4))

(obj_user3 0.4))))

Representation in the Testbed

Page 20

Confirmation

Contradiction
f2(x) = 0.5 + (0.5 * x) f1(x) = (0.5 * x)
1.0
New
C.F
0.5 + - = - = = = = - =
> >
0 1.0 0 1.0
0ld C.F. 0ld C.F.

Precedence Characteristics
f1(£f2(x)) .25 + .25 * x
f2(£f1(x)) .50 + .25 * x

~

f2(£f1{(x))

0ld C.F.

Figure 6. Update Functions for Metaknowledge Certainty Factor (C.F.)
and Temporal Precedence Characteristics

Page 21 .

Mapping rule for relevance, r = 0.7

f(x) = (r * £2(x)) + ((1l-r) * £1(x))

Confirmation Contradiction
0.7 * £2(x) 0.3 * f1(x)
1.0 1.0

New
C.F.
0.15+ - = = = = = = - =
> >
0 1.0 0 1.0
0ld C.F. 0old C.F.

1.00
0.851

New C.F.

0ld C.F.

Figure 7. Updating Scheme for Metaknowledge Certainty Factors (C.F.)

nozx»xX0onN

Page 22

HEURISTIC DISTANCE

0
50 .
100
150 .
200 .
. ’ SIMULATION PARAMETERS
: 3 useré
300 . 10 keywords
. 20 documents/user (avg)
. 3 keywords/document (avg)
. 30% retrieve commands
. 60% read commands
350 . 5% create commands
5% delete commands
. delete threshold = 0.25
. move threshold = 0.75
400 .
450 .
v

Figure 8. Learning (Decrease in Heuristic Distance)
As Metaknowledge Is Accumulated While
Processing Document Commands

et

nozZzp»XX0N

HEURISTIC DISTANCE

Page 23

0
i .
50 .
100 .
150 .
200 .
. . SIMULATION PARAMETERS
: 3 users
. 10 keywords
300 . 20 documents/user {(avg)
. 3 keywords/document (avg)
. 30% retrieve commands
. 60% read commands
. % create commands
350 . 5% delete commands
. delete threshold = 0.25
move threshold = 0.95
400 .
450 .
v

Figure 9. Learning (Decrease in Heuristic Distance)
As Metaknowledge Is Accumulated While
Processing Document Commands

N

[

Nozr»Xx0N0

Page 24

HEURISTIC DISTANCE

0
50 .
100 .
150 .
200 .
) SIMULATION PARAMETERS
: 3 users
10 keywords
300 . 20 documents/user (avg)
. 3 keywords/document (avg)
. 30% retrieve commands
. 60% read commands
. 5% create commands
350 . 5% delete commands
. delete threshold = 0.10
. move threshold = 0.75
400 .
450 .
v

Figure 10. Learning (Decrease in Heuristic Distance)
As Metaknowledge Is Accumulated While
Processing Document Commands

~

nouzZpr»r X000

Page 25

HEURISTIC DISTANCE

0
50
100
150
200 .
SIMULATION PARAMETERS
3 users
10 keywords
300 . 20 documents/user (avg)
3 keywords/document (avg)
. 30% retrieve commands
60% read commands
. % create commands
350 . 5% delete commands
. delete threshold = 0.10
move threshold = 0.95
400
450
v

Figure 11. Learning (Decrease in Heuristic Distance)
As Metaknowledge Is Accumulated While
Processing Document Commands

Page-26

World Model |

Environment

l Commands l Document Base
Configuration

Learning >
Heuristics

Document
Metaknowledge

Metaknowledge
Updating Scheme

| — _J
CR - Critic
LE - Learning Element
PE - Performance Element
IS1 - Instance Selector for commands
IS2 -

Instance Selector for document base configuration

Figure 12, Learning System LS1 {(Lower Layer)

Page 27

World Model

Environment
Initial Initial
Metaknowledge Document Base Command
Configuration Configuration Sequences

>@

Meta- ><:%R > >| Learning > PE
Heuristics Heuristics
A

Heuristic
Modification
Methods

CR - Critic

LE - Learning Element

PE - Performance Element
IS - Instance Selector

Figure 13. Learning System LS2 (Upper Layer)

