A Final Report to
Office Systems Division
NCR Corporation
Columbia, South Carolina
June 7, 1985

PART I:
IMPLEMENTATION OF A
DISTRIBUTED EXPERT SYSTEM FOR
THE INTELLIGENT FILING SYSTEM (IFS)

D d) Bl

“Prof. Ronald D. Bonnell
Project Director

Wi dN. fWW L Sty

Dr. Michael N. Huhns [/" Dr. rry M./Stephens
Principal Investlgator Prin 1pal Investigator

Center for Machine Intelligence
Department of Electrical and Computer Engineering
University of South Carolina
Columbia, SC 29208
(803) 777-4195

FINAL REPORT, PART I:
IMPLEMENTATION OF A DISTRIBUTED EXPERT SYSTEM
FOR THE INTELLIGENT FILING SYSTEM (IFS)

TABLE OF CONTENTS

I. INTRODUCTIONc.no.n-.oa-uoocoocool

II. NETWORK SERVER. .. ccesveestvoccss

AI

B.

LISP ImplementatioN.i..eeessss

The C Implementation........

III. QUERYPLANNER.I.‘..‘.ll..“l.....

® s 8 0 0% 8 0

*e e e s a0

s 9 0 ¢ s 0

A. Structure of the Query Blackboard....... ceceae
B. Query Planning...scessvecessssssssasas eeenn
C. Database Interface...iveeeceeecnraceasans e
D. Query StruCtUre...ceeccessosscsnsssasoas s e

Iv. RESPONSE PLANNER...

A. Response Blackboard Structure....cesoes.s ceseas

B. Global Variables for Response Planning.. ceenn

C. Response Planner OperatioON....ceeeeeecss ceeens
APPENDIX.

Program LiStingS...ceeeeacsscssesensns

11
13
13
13
14
16
16
17
18
20

Page 1

A DISTRIBUTED EXPERT SYSTEM APPROACH
TO THE INTELLIGENT FILING SYSTEM (IFS)

I. INTRODUCTION

This report discusses the implementation of the designs for
the Network Planner, Query Planner, Response Planner, Learning
Subsystem, and Data Model. The Network Planner is responsible
for establishing network connections among the MINDS systems and
organizing queries and their responses into the proper messaging
format. In addition, it will maintain information on the status
of the other nodes in the network 1in order to facilitate
communications. Figure 1 shows the relationships among MINDS and
the other IFS subsystems.

The Query Planner is the essence of the MINDS system. When
a query 1is received from the user interface, a sequence of
actions 1is generated to satisfy the query. This sequence
typically involves the retrieval of information from the
databases of document surrogates and metaknowledge, the accessing
of files wvia the 0OS/FMS, the communication of messages through
the Network Server, the processing of errors, and the generation
of responses to the user interface. This sequence, or plan, will
be constructed for each allowable input from the user interface.

The Response Planner is responsible for merging partial
responses to queries into a final response which is transmitted
to the user interface. It must keep track of which nodes are
being queried and which have responded. Metaknowledge received
from other nodes in the network 1is collapsed by the response
planner 1into an updated metaknowledge table. The Response
Planner also cooperates with the Query Planner by informing it of
other nodes to query. This is accomplished by examining local
metaknowledge and comparing it to a threshold wvalue for query
generation,

The Learning Subsystem incorporates heuristics for revising
metaknowledge. The heuristics implemented are those governing
updating local metaknowledge based on metaknowledge received from
other nodes and those for reducing to zero the metaknowledge
about a user who, when queried, supplies no documents about a
particular keyword. Other heuristics can be incrementally added
to the system as desired. The Learning Subsystem represents the
most significant research area in the MINDS project and is
sufficiently novel to bring attention to the intelligent filing
system in the open literature.

The data model for MINDS has been established and 1is
implemented wusing the MISTRESS 32 database management system.
Tables for document surrogates and metaknowledge are included.

Page 2

The above subsystems are implemented in Franz Lisp and C on
a network of three SUN-2 workstations. In particular, this
prototype includes the following modules:
1. Network Planner
2. Query Planner (with command parser)
3. Learning Subsystem
4, Database

5. Query and Response Blackboards

6. Response Generator

User
\
Natural
Language
Interface
document surrogates
pointers
\) v
document ptrs
<
MINDS
surrogates
<
surrogates
\'4
MISTRESS
DBMS
documents
data
' \)

Operating System

File Access Mechanism

~

data/documents

\'/

Disks/Files

Figure 1. The Relationship of MINDS to

>

Network
Server

Page 3

<~——>Qther
Nodes

other IFS Components

Page 4

II. The Network Server

The Network Server is designed to meet the specific needs of
the MINDS project, The result is a communications package for
implementing a fully-connected network. » In a fully-connected
network each node has a direct link to every other node. This
type of configuration is rarely used commercially due to the
complexity and expense. It was chosen for the prototype since it
consists of only three nodes, each node can easily address all
other nodes, and each carries an equal burden for network
communications. The Server consists of two major parts: A LISP
portion which is embedded in the MINDS program and a C portion
which implements the basic internode communication primitives and
runs concurrently as a separate process.

A. LISP Implementation

The following section describes the LISP implemented portion
of the' Network Server. The C process which supports the
communication primitives (recv and send) is described in the next
section. These two functions are written in LISP, The goal of
the Server is to make all communications outside of a given node
transparent to the other modules. The Query Planner and the
Response Planner determine the exact form of the data structures
at each node and the Server complies by using whatever data
structures the designers of the Query Planner and Response
Planner have chosen. If the local data structures are changed,
only minor routing changes in the LISP portion of the Server - and
no changes to the C portion of the Server are required. The
other modules place information only in the local data
structures. For instance, the Query Planner places a query which
should be sent to another node in the 'to_remote' buffer; then
the Server sends the query out. The Server at the remote node
places the incoming query in the correct buffer at the remote
node. The Server is the only module which knows about physical
device names. It is sufficient for the other modules to refer to
nodes only by their logical name, such as user 1.

Within a node the Server must take care of the following two
situations: 1) It must receive all incoming packets from the
sockets and place them in the correct data structure and do the
required updating associated with that packet, and 2) It must
transmit all eligible packets from the local data structures to
the network by sending them to the appropriate socket.

We first examine the role of the Server for receiving
information, All information comes into a node through the
sockets. There are two sockets for the two other nodes in the
network and one socket which connects to the user interface. The
sockets are named userl, user2?2, and user3. If we are at Nodel,
then wuserl is the local user and that socket is connected to the
user interface process. The local user socket is a UNIX domain
socket as opposed to the Internet domain sockets for the remote
nodes. The extra complexity of the Internet sockets is necessary

Page 5

for remote nodes because the UNIX domain sockets only support
communications within a node. The domain of the socket is
transparent to all of the LISP functions. The primitives send
and recv are LISP functions which issue a series of commands to
the C process causing it to receive or transmit data on the
specified socket.

The Server C process is started by LISP's built~-in *process
function. This function starts another process and returns a
read and write port to that process. The C process behaves as if
it were sending 1its data to the screen and receiving its data
from the keyboard. LISP communicates with this process with the
standard read and print functions with an additional argument
which is the port of the C process. A read or write function
normally wuses the standard input/output wunless the optional
argquments are used. Thus to receive input from the C process a
command is sent to it by use of a print statement telling it that
a read is desired and the name of the socket is to be read. The
C process then prints the first packet in that socket to the
'pseudo-terminal’.

When LISP reads the in-port it gets the packet from that
particular socket. If the socket is empty a special message is
printed so that it is clear that the socket is empty. The packet
is an s-expression, so each LISP read will acquire the entire
packet. The Server C process is insensitive to the content of
the packet, so the Query Planner and Response Planner must ensure
that the packets are single s-expressions. If a packet were not
a legal s-expression the Server would be able to send the packet,
but when the remote node tried to receive 1it, there would be
problems when LISP tried to read the 'pseudo-terminal’'. The
exact nature of the problem would depend on how the packet was
flawed. The processes at a single node are shown in Figure 2.
Note that all LISP-to-C interfaces are *process links and all
C-to-C interfaces are sockets.

Page 6

e m + o ————————— +
C SERVER |- | MINDS

o ——— + AN b +

/ \ *process | I

/ 0\ links +----- ———>

Internet / \ |
sockets / \ o — +
/ \ MISTRESS |
o ———————— +

To other nodes

Figure 2. The interprocess links for an individual node.

To receive current inputs the Server reads one of the
sockets (the order in which the sockets are polled is
unimportant) and examines the first packet, If the socket |is
empty then a special token is returned and the next socket is
examined. If the socket is not empty then the message type
(query or response) is determined by looking for specific labels
that are unique to either a query or a response., All packets are
in the form of association lists. An association list is a list
of pairs in which the first element is the key to that field.
There are functions in LISP for extracting the pairs from an
association list,

The Server identifies a query by the presence of the key
'message’. A response is identified by the key 'result'. These
particular keys are not the only means by which queries and
responses can be distinguished but they are sufficient., If the
packet is a query then it could be from.another node or from the
local user. The query, whether local or remote, is placed in
query_buffer_ 1. If the packet |is a response then the
response_blackboard must be wupdated. Responses will come only
from remote nodes since the user will not issue a response and
local responses (the results from Mistress) are placed directly
in the response buffer by the Query Planner.

To update the response_blackboard, the slot for the matching
query 1id must be found. The incoming packet will contain both
results and metaknowledge although the value of either may be
nil. These two fields and name of the originator of the response

Page 7

are stripped from the packet and ‘the rest -of the packet |is
discarded. The results and metaknowledge are appended to the
slot and the name of the originator is removed from the 1list of
users to respond for that slot. The updated slot is then placed
on the response blackboard in place of the old response. The
reason for wupdating the list of users to respond is so that the
Response Planner can determine when all the outstanding queries
have been answered. The Server continues to check the sockets
until all three sockets have been examined and have been emptied.

The other half of the Server's job is to transmit completed
responses and remote queries, The Query Planner places all
queries which should be transmitted into a special buffer called
"to_remote’. The Server checks the to_remote buffer and
transmits each packet until the buffer 1is empty. Each packet
contains a field called destination. The value of that field is
used as the argument to the send function. The Server next
checks the response_blackboard to see if any of the responses are
complete. The Response Planner will mark any completed response
by inserting a field labeled 'status' with a value of ‘complete’.
This indicates that the response is ready to be transmitted. The
Server then sends the response to the query originater, which
could be a local user or a remote node.

The Server cleans the response_blackboard blackboard and
deletes the pointer to the control block for that query. The
Query Planner creates a control block to keep track of the status
of each query. A unique query id is generated for each query and
this query id is the key to the control block. The query 1id is
unique for the entire network. If the key to the control block
is not deleted then memory space would be taken up by the control
blocks for queries which have been answered.

The control structure for the MINDS program consists of a
single loop. Each major module, the Query Planner, the Response
Planner, and the Network Server, is <called 1in sequence during
each pass through this loop. Most gqueries require multiple
passes to be completed.

The modules work on a set of queries as information becomes
available, If part of a response is due from a remote node then
the Response Planner awaits that remote response 1in order to
complete the slot. There can be a considerable number of steps
involved in a content based query where multistep planning is
required. Due to this step-wise nature of answering queries, a
given node may contain many queries and responses in various
stages of completion. The data structures and the communication
facilities are designed to deal with all possible cases of query
processing in a distributed environment. The architecture for
the entire MINDS system is shown in Figure 3.

AT Ve iR *

Page 8

User
= - - Focus of I

nterface

|

, //,_.- — —— Control - -

A

| Planner

Response
Blackboard

|
| |

{ \\\h_ The Network
. Mistress Surrogates and
[—
Metaknowledge

~ ., |File access
mechanisms <—— UNIX files

Figure 3. The Architecture of a Single node.

Note: The learning module is embedded in the Response Planner.

- - = — A Control Path

k3

A Data Path

!
i
Query l
!)*’ Planner To_remote !
f/ A
i o Network
1

| Server i

\ S
1 Buffer |
ﬁJ Response ff '

Page 9

B. The C Implementation

This section describes the C code portion which creates the
sockets for the network. As previously mentioned, the C Server
is a process which creates the sockets and connects with the
other C processes at the other nodes. After the sockets have
been successfully initialized, the process remains in a 'forever'
loop to service requests for network communication. The program
is designed to take input from the keyboard and send 1its output
to the terminal. This is done so that the *process function in
LISP would work correctly.

The C process reads and writes to the 'pseudo-terminal' set
up by the *process function. An alternative to wusing the
*process function was to use LISP's ‘cfasl' function whereby the
executable C code would be loaded into the LISP environment as a
foreign function. There is no particular advantage to either
approach in terms of complexity so it was felt that having a
separate process would be an appropriate and logical
partitioning. Having a separate process also allows for the use
of the Server to be more easily extended to wuse 1in other LISP
programs where such communications are required. Since the
Server is a stand-alone process it can also be used directly by
other C programs, either by being incorporated in them or by
being run concurrently.

Due to the topology of the petwork each node requires a
communication channel to the other nodes as well as tc the user
interface. There are three sockets at each node. Two are
connected to the other nodes and one is connected to the user
interface. The sockets which are connected to the other nodes
are Internet-domain sockets and the socket for the user interface
is a UNIX-domain socket, The UNIX-domain socket 1is simpler to
set up but cannot be wused for intermachine communications.
Therefore, the Internet sockets must be used for node-to-node
communications. The socket type 1in all three cases is the
'stream' type. The 'datagram' type was ruled out because it is
not guaranteed to be reliable or unduplicated. The other type of
socket, the 'raw' socket, is not supported and exists primarily
for those who wish to experiment with new protocols.

The server-client paradigm causes some awkwardness in
setting up a fully-connected network. To help avoid confusion
when the term server is used in the context of the server-client
relationship, we will write server in lower case; the Network
Server will always be capitalized. For a communication channel
to be established two processes must play asymmetric roles in the
establishment. The server must be active first and await
connection from the client. This asymmetry means that the three
programs must be set up to run in a specific order. If a client
runs before the server then there is nothing for the client to
connect to and the connection fails. 1In the MINDS system, the
three C programs must be run in the following order: Nodel,
Node2, Node3. Once the communication channels are established,
full duplex data transmission may occur with no restrictions on

Page 10

order.

The first program, Nodel, acts as a server to Node2 and
Node3. Node2 acts as a client to Nodel and a server to Node3.
Node3 acts as a client of both Nodel and Node2. After the three
nodes have set up their 1intermachine sockets, each acts as a
server awaiting a connection from the wuser interface process.
This last connection is the UNIX socket. Since the accept call
which is issued by the server is a blocking call, all sockets
must connect successfully before any may begin communicating.

Table 1. The server-client relationship for the
socket creation,

Step Nodel Node? Node3

1. server <------- > client

2. . server <----—--—------ > client

3. server <---—-----—----—————--—---—----> client

4., server server server
(of user (of user (of user
interface) interface) interface)

Note: The user interface socket at each node can be started
in any order.

Address binding in the Internet domain is somewhat
complicated and requires an explanation. The two processes which
are connected through an Internet socket are bound by an
association. This association 1is a five-tuple made up of the
following: 1) the protocol, 2) the local address, 3) the local
port, 4) the foreign address, and 5) the foreign port. Two C
functions are required to fill the association: 'gethostbyname'’
and 'getservbyname' (only a client needs these functions). The
gethostbyname requires the logical host name of the server. The
bind call specifies half of the association and the connect call
completes the other half., The logical host name is contained in
the file /etc/hosts along with the Internet address. For
example, the host name may be 'cmil' and the Internet address may
be 192.9.200.1. This address is fixed by the manufacturer and is
contained on a PROM on the processor board.

This host name is not the same as the address mentioned
above as part of the association. A wildcard is used in place of
the local address in our implementation allowing the system to

Page 11

choose the 1local address. The port may also be left as a
wildcard, but the port and 1local address cannot both be
wildcards. The logical host name is supplied as an argument to
the C process by LISP's *process function. Thus to change to a
different set of machines the arguments in the LISP code which
activate the C processes must be changed.. The function
getservbyname looks in the /etc/services file for a port
corresponding to the name and protocol given it., The port can be
specified in the C code as a constant but it is better to enter
the desired port in /etc/services. We are presently using the
name 'mindsport' with a value of 1151. The port number must be
higher than 1024, All ports lower than 1024 are privileged and
can be accessed only by the system or the superuser. These
privileged ports support features such as remote logins.

The packets used for transmission by the sockets are in a C
structure. This structure is created by the Server that sent the
packet, representing yet another layer of protocol. The
structure contains two fields: 1) the length of the packet in
bytes, and 2) the contents of the message. The first field is
four bytes and contains a long integer representing the length of
the message in bytes. The second field 1is a character array
which can have a maximum size of 4 kbytes. The Server first uses
a recv call to preview the packet and extract 1its length. The
recv call (this 1is the recv call in C, not the one we wrote in
LISP) allows one to look at the data in the socket: the data 1is
treated as unread and -a subsequent read can capture this data.
If there is a message in the socket then a read is performed. A
non-blocking option allows us to tell if the socket is empty
after the first recv. The read uses the length of the message
plus four (four bytes for the 1length) to extract the entire
packet. This method in which each packet contains its own length
allows packet boundaries to be preserved in the socket queues.
It needs only one read call after the 1length 1is found. The
packet must always be a LISP s-expression. After the packet is
read it is printed to the pseudo-terminal. A LISP read is
performed from the pseudo-terminal and passed into the MINDS
program. A LISP read always reads one s-expression. This 1is
very handy since the packets are s-expressions: each LISP read
will acquire one packet and there is no need for extra code in
LISP to determine packet boundaries.

One key feature of the sockets 1is that they are all
non-blocking for reads. Normally when a read is performed, the
read or recv function will not return until there 1is something
there to read. This is unacceptable since the reading of empty
sockets would halt the system and a deadly embrace is 1likely.
The C function 'fcntl' is used to set the proper bit mask so the
the sockets become non-blocking. If an attempt is made to read
an empty socket, the read returns prematurely and the C global
variable 'errno' is set to 35 which is the code for a blocking
read condition. To take advantage of this feature the Server
resets the global variable 'errno' at the top of its main loop.
It performs a recv on a particular socket to get the length of
the packet. Before reading the message, if any, it checks the

Page 12

value of ‘'errno'. If 'errno' has been changed to indicate a
blocking read would occur (to a value of 35), then the Server
knows that the socket was empty and returns a special token
indicating an empty socket. If the wvalue of 'errno' has not been
changed then the packet 1is read and is passed to the LISP
program.

There is a simple command set to tell the C process which
socket should be read or written to. For instance, if we wish to
send a message to Node2 we would first send the command 'w2', for
write wuser2, to the C process. Then when we type in the packet
it is sent to the requested destination. Note that we are wusing
a pseudo-terminal and our packet is delimited by a carriage
return., Both the command and the packet are read using the 'get'
function. 1If we want to read from NodeZ2 we send the command 'r2'
and the C process prints the first packet on that socket queue to
the terminal.

When the time comes to discard the sockets, the LISP
function 'stop_soc' should be wused. This function closes the
Internet sockets and shuts down the UNIX socket. If the program
is exited abnormally (a crash for instance) then there will be a
process which holds the addresses that will be needed for a MINDS
reboot. These processes must be killed prior to rebooting.

Page 13
ITI. QUERY PLANNER

A, Structure of the Query Blackboard

The queries from the 1local ©Natural Language Interface,
remote nodes, the Response Planner are queued in the Query
Blackboard. There are five query queues on the blackboard,
namely, query_buffer 1, query_buffer_ 2, query_ buffer 3,
query_buffer 4 and query_buffer 5. Query buffer_1 stores the
initial queries either from 1local or from remote nodes. The
queries 1in this queue are in associate list structure.
Query_buffer 2 stores a 1list of new users to be accessed for
multistep planning. The queries in this queue are composed of a
query ID and a 1list of wusers. This queue is updated by the
Response Planner,.

Query buffer_ 3 stores the pathnames for remote copy gqueries,
which are responses to a slave query of "master" copy gqueries.
For example, "Copy all the documents where keyword = unix." This
queue is updated by the Response Planner and consists of a query
ID and a list of pathnames. Query buffer 4 stores two sets of
metaknowledge table records. The first set is the old records
before they are updated; the second set is the revised records.
The o0ld ones are deleted from the database and the new ones are
inserted. Query buffer_ 5 stores surrogate records to be updated.

B. Query Planning

An initial query is parsed by the query parser, and a
control table 1is set up for this query. 1If the query requires
single step planning for a single destination, it will be passed
to procedurel for execution. If it 1is requires single step
planning for multiple destinations, it will be passed to
procedure?2 for execution. 1If it requires multistep planning for
multiple destinations, it will be passed to procedure3 for
execution. If the query is a multistep planning copy query, it
will be passed to procedure9 fro execution.

The queries to the local database will be queued in the
to_local buffer after planning, which will be processed by the
database interface. The queries to the remote nodes will be
queued in the to_remote buffer through the network server. For a
query requiring multistep planning, a new query planning cycle is
started whenever a new list of users to access is appended to
query buffer_2. For a copy query, the remote copy queries are
sent out when a list of pathname is ready.

C. The Database Interface

The database access is a lisp interface to the MISTRESS DBMS
system. When initialized for a select query, it first issues the
query to MISTRESS, then gets the response from the port. Next it

Page 14

places the result in an associate list structure and queues it in
the response buffer for response planning. For other queries,
the database interface simply issues the commands directly to
MISTRESS via the lisp port.

c85; D. Query Structure

Since the Query-Planner is coded in lisp, it can accept only
an input query expressed as a lisp structure. The use of the
following syntax ensures that commands received by the query
planner are in the proper format.

<query> ::= ‘'(' '(' 'query_id' <query ID> ")
(' 'originator' <originator> ")
'{(' 'destinations’ <destinations> ')’
(' 'message' <message>))

<query ID> ::= <a_string>;

<originator> ::= <a_string>;

<destinations> ::

.
14

'(' <a_string> {<a_string>} ')' | '*'
<a_string> ::= <first char><other chars>;

<first char> ::= 'a'|['b'|'c'|'d'"|'e'|'f'|'g'|'h"|
|ic!ljvlvkllllllvmvllnlllovlvpll
qulvrl|1SlIvttlvullivlllwvllxvl
'Y"'Z'i .

<other chars> ::= {<first char>} | {<numeric char>} | <other chars>;
<numeric char> = "Q'[*1* "2 ["'3"['4"['S'|'6"|'7'['8'|'9";

<message> ::= <MISTRESS query message> ')' |

1(1
v('

<copy_file message> ')';
<MISTRESS query message> ::= '(' <command> {<argument>} ')’
{ '(' <command> {<argument>} ')' };
<command> ::= ‘select' | ‘'from' | 'where' | 'update' |
'set' | 'insert into' | 'values' | 'create table' |
'drop table' | 'delete' | 'empty table';

<argument> ::= <table-name> | <attribute> {'comma' <attribute>} |
<requirement> | <value list>| <empty>;

<copy file message> ::= '(' <copy command> <from part> <to part>
<where part> ')';
<copy command> ::= '(copy)';
<from part> ::= '(' 'from' <pathname list> ')"' |
l(' lfroml LEE] ')l

Page 15

<to part> ::= '(' 'to' <new file name> ')' |
] v

ltov 1 &Y l)l;
<where part> :: '(' 'where' <requirement> ')’';

The definition above 1is made only in terms of lisp
structure, not in terms of query syntax. Please refer to the
MISTRESS syntax BNF except for the following changes:

o A ',' should be replaced by 'comma’'.
o A ';' should be omitted.
o If there are internal parentheses in a MISTRESS query, either

'right-parenthesis’' or 'left-parenthesis' should be used

instead of '(' or ')'.

o Single quote ' should be replaced by either "left-quote" or
"right-quote".

. Page 16
IV. RESPONSE PLANNER

A. Response Blackboard Structure
The format of the Response Blackboard is as follows:
Response Blackboard (RBB) = ({response-slot})

response-~slot = ((query_id <id>)
(users” to respond ({<respondent-name>}))
(originator <user-name>)
[(status complete)] Optional:
Exists only when statu% is complete
(metaknowledge ({<collapsed-metaknowledge>}))
(result ({<synthesized-result>}))

query_id = the tag of the query identification

id = identification of a query, uniquely assigned by the
User Interface.

users_to_respond = the tag of a list of user names that have
not responded to the query

respondent-name = user-name of the respondent
originator = the tag of the 'user originated the query
user-name = uniquely assigned by MINDS

status = it is set to "complete" when the response is
completely synthesized and ready for the Network
Server to transmit. Note: Status exits only
when it is set to "complete"

collapsed-metaknowledge = ({metaknowledge grouped by user})

synthesized-result = ({<respondent-name>
<results grouped by respondent>})
Note: The results are grouped in
descending order of the certainty
factor of each respondent.

LIS

Page 17

Global Variables for Response Planning
The response planner uses the following global variables:

local_users
This 1s the name assigned to the user of the local node and
is established when MINDS begins execution.

query buffer 2. This is a list which consists of the names
of the wusers who will be queried based on metaknowledge
provided by other respondents. This list informs the Query
Planner to perform further planning,

query_buffer 4. This is a list which consists of
recalculated metaknowledge. The Query Planner uses this list
to update the metaknowledge table of the database.

response_buffer. This 1is a 1list which consists of new
gueries set up by the Query Planner. The Response Planner
retrieves the data from this buffer to set up the response
slot on the rbb. After the retrieval, the Response Planner
deletes this buffer.

rbb. This 1is the actual Response Blackboard which 1is
initialized when MINDS begins execution,. The Response
Planner adds response slots to the rbb; the Network Server
removes a response slot when the response contained in the
slot is selected for transmission.

threshold, This is a parameter specified by the system.
Target users having a certainty factor above this value will
be queried.

Page 18

Response Planner Operation
The response planner performs the foliowidg functions:

Given a query on the response buffer, the Response Planner
creates a corresponding response slot on the rbb. At the
same time, if any local metaknowledge and document surrogates
are obtained from the query engine, they are placed in the
slot. If the response is for a remote query (a query
originated from a remote node), the status 1is set to
"complete”.

Based on the metaknowledge, the response planner creates a
list of users to query. A user is selected to be queried if
the certainty factor for such an wuser is ‘"higher than the
specified threshold., This list of users provides information
to wupdate users_to_respond as well as query_buffer_ 2.
Users_to_respond is placed on the response slot in the rbb.
Query buffer 2 is used by the Query Planner to plan the
query. ‘

The users_to_respond list is used to keep track of the wusers
that have not responded to the gquery. For each response that
the Network Server appends to the rbb, the corresponding
respondent is deleted from the users_to _respond list. If
users_to respond is empty, then responses have been returned
from all the queried users.

For each response slot, the Response Planner determines 1if
all the response are in. If yes, it then synthesizes result
and collapses metaknowledge. If no, the slot is skipped.

Based on the collapsed metaknowledge, new metaknowledge |is
calculated. Two layers of heuristic are used to calculate
the metaknowledge. These heuristics are discussed in the
Learning Subsystem. After the metaknowledge has been
recalculated, any user that has a certainty factor higher
than the specified threshold is queried.

These new users that are to be queried are placed in the the
users_to_respond of the response slot and the query buffer_ 2.

The new metaknowledge is placed in the query buffer_ 4 by the
Response Planner. Query Planner retrieves the metaknowledge
from this buffer and updates the metaknowledge table of the
database.

When the users_to_respond list is empty and no other users
are to be queried, the results are synthesized and the status
of the response slot is marked with value "complete". This
informs the Network Server that the response is ready to be
sent to the originator.

Page 19

9, After each response slot: on the rbb is examined and
processed, control 1is returned to the Focus of Control
module.

