
Agents and the

Semantic Web

Prof. Michael N. Huhns

University of South Carolina

http://www.cse.sc.edu/~huhns/

2

Outline of this Tutorial

◼ 1: Introduction

◼ 2: Description

◼ 3: Engagement

◼ 4: Collaboration

◼ 5: Selection

◼ 6: Synthesis

3

1: Introduction

4

The Web As Is

◼ Designed for people to get information

◼ Sources are independent and
heterogeneous

◼ Limitations
◼ HTML describes how things appear

◼ HTTP is stateless

◼ Processing is asynchronous client-server

◼ No support for integrating information

◼ No support for meaning and understanding

5

Which Semantic Web?
◼ Version 1: Semantic Web as a Web of Data”

(metadata from database schemas)

◼ Version 2: “Enrichment of the current Web”
(metadata from NLP and automatic markup)

◼ Different use cases
◼ Different techniques
◼ Different users

◼ Version 3:
“Semantic Web as a Web of Services”

6

What is a Web Service?

◼ "… a piece of business logic accessible via the
Internet using open standards…“ (Microsoft)

◼ Encapsulated, loosely coupled, contracted
software functions, offered via standard
protocols over the web (DestiCorp)

◼ A set of interfaces, which provide a standard
means of interoperating between different
software applications, running on a variety of
platforms and/or frameworks (W3C)

Our working definition: A WS is functionality
that can be engaged over the Web

7

Viewpoints on Services

◼ Networking: a service is characterized by bandwidth and
suchlike properties

◼ Telecommunications: Narrow telephony features such as caller
ID and call forwarding, and basic connection services like
narrowband versus broadband (itself of a few varieties)

◼ Systems: Services are for billing and storage and other key
operational functions. These functions are often parceled up in
the so-called operation-support systems

◼ Web applications: Services correspond to Web pages, especially
those with forms or a programmatic interface thereto

◼ Wireless: Wireless versions of the Web, but also things like
messaging, as in the popular short message service (SMS)

If there is agreement here, it is that a service is a capability that is
provided and exploited, often but not always remotely

8

Open Environments: Characteristics

◼ Cross enterprise boundaries or
administrative domains

◼ Comprise autonomous resources that
◼ Involve loosely structured addition and removal

◼ Range from weak to subtle consistency
requirements

◼ Involve updates only under local control

◼ Frequently involve nonstandard data

◼ Have intricate interdependencies

9

Autonomy (Usage)

Independence of business partners
(users)

◼ Political reasons
◼ Ownership of resources
◼ Control, especially of access privileges
◼ Payments

◼ Technical reasons
◼ Opacity of systems with respect to key

features, e.g., precommit

10

Heterogeneity (Construction)

Independence of component designers and
system architects

◼ Political reasons
◼ Ownership of resources

◼ Technical reasons
◼ Conceptual problems in integration
◼ Fragility of integration
◼ Difficult to guarantee behavior of integrated

systems

Best not to assume homogeneity

11

Dynamism (Configuration)

◼ Independence of system administrators

◼ Needed because the parties change
◼ Architecture and implementation

◼ Behavior

◼ Interactions

◼ Make configurations dynamic to
improve service quality and maintain
flexibility

12

Suppose you want to sell cameras over the
Web, debit a credit card, and guarantee
next-day delivery

◼ Your application must

◼ update sales database

◼ debit the credit card

◼ send an order to the shipping department

◼ receive an OK from the shipping department for
next-day delivery

◼ update an inventory database

◼ Problems: Some steps complete but not all

Simple B2C Web Service Example

Internet
SellCamera

Web Service

Shipping

Database

Sales

Database

Inventory

Database

User

13

Database Approach (Closed)

◼ Transaction processing (TP) monitors (such as IBM’s
CICS, Transarc’s Encina, BEA System’s Tuxedo) can
ensure that all or none of the steps are completed, and
that systems eventually reach a consistent state

◼ But what if the user’s modem is disconnected right after
he clicks on OK? Did the order succeed? What if the line
went dead before the acknowledgement arrives? Will the
user order again?

The TP monitor cannot get the user into a consistent state!

14

Approach for Open Environment

◼ Server application could send email about credit
problems, or detect duplicate transactions

◼ Downloaded applet could synchronize with server
after broken connection was restored, and recover
transaction; applet could communicate using http, or
directly with server objects via CORBA/IIOP or RMI

◼ If there are too many orders to process
synchronously, they could be put in a message
queue, managed by a Message Oriented Middleware
server (which guarantees message delivery or failure
notification), and customers would be notified by
email when the transaction is complete

The server behaves like an agent!

15

Web Services: Basic Architecture

Service
Broker

Service
Provider

Service
Requestor

Bind or
invoke
(SOAP)

Find or
discover
(UDDI)

Publish or
announce
(WSDL)

Registry; well-known

Not well-known

16

SOAP: Simple Object Access Protocol

◼ Used to exchange messages via HTTP, SMTP, and
SIP (Session Initiation Protocol for Internet
telephony)

◼ Originally designed for remote-procedure calls (RPC)

◼ Works through firewalls on port 80

◼ Character-based, so easy to encrypt/decrypt and thus
easy to secure

◼ Inefficient due to character, not binary, data and
large headers

◼ Does not describe bidirectional or n-party interaction

17

WSDL: Web Services Description Language

◼ Describes a programmatic interface to a
Web service, including

◼ Definitions of data types

◼ Input and output message formats

◼ The operations provided by the service

◼ Network addresses

◼ Protocol bindings

18

Directory Services

◼ Enable applications, agents, Web service
providers, Web service requestors, people,
objects, and procedures to locate each other

◼ White pages – entries found by name

◼ Yellow pages – entries found by
characteristics and capabilities

◼ A basic directory might be a simple database
(passive) or a broker/facilitator (active, that
provides alerts and recruits participants)

◼ UDDI – both white pages and yellow pages,
but passive

19

UDDI: Universal Description,
Discovery, and Integration

◼ UDDI is a Web service that is based
on SOAP and XML

◼ UDDI registers

1. tModels: technical descriptions of a
service’s behavior

2. businessEntities: describes the
specifications of multiple tModels

20

Basic Profile (BP 1.0)

◼ The Web Services Interoperability
Organization (WS-I) has specified the
following Basic Profile version 1.0:

◼ SOAP 1.1

◼ HTTP 1.1

◼ XML 1.0

◼ XML Schema Parts 1 and 2

◼ UDDI Version 2

◼ WSDL 1.1

21

Example of Current SOA Success

Amazon.com:
◼ Converted monolithic application into 100’s of services
◼ Applications for customer service, selling, Amazon’s Web pages, and

hosted applications invoke the services as needed
Enables unanticipated 3rd-party applications:
◼ Shopping with a camera phone (uses reviewing service, comparable

product service, and current price service)
◼ Mechanical Turk is a Web service that allows developers to post

questions to a large group of people to gain their insight on a particular
issue. Simple Storage Service (S3) and Elastic Compute Cloud (EC2)
are Web services that let Amazon sell excess storage and excess
compute capacity, respectively, to third-party developers

◼ FBA (Fulfillment by Amazon) makes Amazon’s warehouse, customer
service, and pick, pack, and ship machinery available to sellers

◼ Already, an AJAX/S3 Wiki uses S3 for code and data

http://www.infoworld.com/article/06/08/30/36OPstrategic_1.html
http://www.infoworld.com/article/06/08/30/36OPstrategic_1.html

12/29/2024 1:50:07 PM © Michael N. Huhns 22

A Source for Research Ideas:
What Are the Limitations of the WS Triangle?

Consider each vertex and edge:

Service
Broker

Service
Provider

Service
Requestor

Bind or
invoke
(SOAP)

Find or
discover
(UDDI)

Publish or
announce
(WSDL)

Registries; well-known

Not well-known

Service
Broker
Service
Broker

Service
Requestor

Service
Requestor

Service
Provider

Service
Provider

12/29/2024 1:50:07 PM © Michael N. Huhns 23

Still Missing…

◼ How to discover appropriate services?

◼ How to compose services dynamically?

◼ How to support programming-in-the-large?

◼ How to engineer for functionality?

◼ How to engineer for maintainability?

◼ How to scale for survivability?

◼ How to replicate for robustness?

24

Why Agents for Web Services?

◼ Convergence between the two

◼ Similarities in key features
◼ Dynamism => autonomy

◼ Openness and compliance => ability to
enter into and obey contracts

◼ Trustworthiness => ethical behavior and
social models of reputation

◼ Trend: Web services, formerly like
objects, are becoming interactive (Web
3.0)

25

2: Description

Modeling and Composing Services

26

Requirements

Analysis

Conceptual

Schema

Background

Knowledge

Universe of

Discourse

Universe of

Discourse
Requirements

Analysis

C
O

M
P

R
E

H
E

N
D

Conceptual

Schema

Service

Interface

Service

Interface

Design
Service

Implementation

Design
Service

Implementation

M
A

P

IN
T

E
R

O
P

E
R

A
T

E

Dimensions of Abstraction: 1

Information resources are associated with
abstractions over different dimensions. These
may be thought of as constraints that must
be discovered and represented

◼ Data
◼ domain specifications

◼ value ranges, e.g., Price ≥ 0

◼ allow/disallow null values

27January 2009

28

Dimensions of Abstraction: 2

◼ Structure
◼ schemas and views, e.g., securities are stocks
◼ specializations and generalizations of domain

concepts, e.g., stocks are a kind of liquid asset
◼ value maps, e.g., S&P A+ rating corresponds to

Moody’s A rating
◼ semantic data properties, sufficient to characterize

the value maps, e.g., some stock price databases
consider daily averages; others closing prices

◼ cardinality constraints
◼ integrity constraints, e.g., each stock must have a

unique SEC identifier

29

Dimensions of Abstraction: 3

◼ Process

◼ procedures, i.e., how to process information, e.g.,
how to decide what stock to recommend

◼ preferences for accesses and updates in case of
data replication (based on recency or accuracy of
data)

◼ preferences to capture view update semantics

◼ contingency strategies, e.g., whether to ignore,
redo, or compensate

◼ contingency procedures, i.e., how to compensate
transactions

◼ flow, e.g., where to forward requests or results

◼ temporal constraints, e.g., report tax data every
quarter

30

Dimensions of Abstraction: 4

◼ Policy

◼ security, i.e., who has rights to access or update
what information? (e.g., customers can access all
of their accounts, except blind trusts)

◼ authentication, i.e., a sufficient test to establish
identity (e.g., passwords, retinal scans, or smart
cards)

◼ bookkeeping (e.g., logging all accesses)

12/29/2024 1:50:07 PM © Michael N. Huhns 31

Description Dimensions for a Web Service

Description of Web
Service

Current Representation
Standard/Technique

Structure: syntactic WSDL

Structure: semantic WSDL-S, OWL-S, WSMO

Function WSDL-S, OWL-S, WSMO

Behavior
(including QoS)

Agile Unit Testing

Structure

FunctionBehavior

12/29/2024 1:50:07 PM © Michael N. Huhns 32

Behavioral Constraints for Stock Quote Service
<?xml version="1.0" encoding="ISO-8859-1"?>
<scenario>
 <parameter>
 <name>stockName</name>
 <value>IBM</value>
 </parameter>
</scenario>
<constraints>
<constraint>
 <id>B1</id>
 <parameter>price</parameter>
 <type>double</type>
 <range>
 <min>60</min>
 <max>110</max>
 </range>
 <relevance>2</relevance>
</constraint>
<constraint>
 <id>B2</id>
 <parameter>responseTime</parameter>
 <type>integer</type>
 <range>

<min>0</min>
<max>5000</max>

</range>
<relevance>1</relevance>

</constraint>
</constraints>

12/29/2024 1:50:07 PM © Michael N. Huhns 33

Java Client for Stock Purchase

package com.invesbot.ws;
public class Client {
 public double getQuote(String symbol) {
 double priceValue = 0.0;
 try {
 StockQuoteLocator service = new StockQuoteLocator();
 StockQuoteSoap quoteService = service.getStockQuoteSoap12();
 priceValue = quoteService.getQuote(symbol);
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 return priceValue;
 }
}

12/29/2024 1:50:07 PM © Michael N. Huhns 34

JUnit Test for Stock Quote Behavior
public class StockQuoteTest {
 com.invesbot.ws.Client client;
double price;
 int responseTime;
 @Before public void setUp() {
 price = 0.0;
 responseTime = 0;
 client = new com.invesbot.ws.Client();
 }
 @Test public void testPrice() {
 Assert.assertEquals(0.0, price);
 price = client.getQuote(“IBM”);
 Assert.assertTrue(price >= 60.0 && price <= 110.0);
 }
@Test public void testResponseTime() {
 Date d1 = new Date();
 Assert.assertEquals(0, responseTime);
 price = client.getQuote(“IBM”);
 Date d2 = new Date();
 long responseTime = d2.getTime() – d1.getTime();
 Assert.assertTrue(responseTime >= 0 && responseTime <= 5000);
 }
 @After public void tearDown() {
 price = 0.0;
 responseTime = 0;
 }
 public static junit.framework.Test suite() {
 return new JUnit4TestAdapter(StockQuoteTest.class);
 }
}

35

Ontology

◼ A specification of a conceptualization or a set of
knowledge terms for a particular domain, including
◼ the vocabulary

◼ the semantic interconnections

◼ some simple rules of inference and logic

◼ Some representation languages for ontologies:

◼ Uniform Modeling Language (UML)

◼ Resource Description Framework Language
Schema (RDFS)

◼ Web Ontology Language (OWL)

◼ Some ontology editors: Protégé, Webonto, OilEd

36

Exercise: Which Conceptualization Has More
Expressive Power?

◼ awg22SolidBlueWire(ID5)

◼ blueWire(ID5, AWG22, Solid)

◼ solidWire(ID5, AWG22, Blue)

◼ wire(ID5, AWG22, Solid, Blue)

◼ wire(ID5)^size(AWG22)^type(solid)^color(Blue)

37

RDF Statements

◼ An RDF statement (aka triple) mimics a
simple sentence in natural language:

◼ Subject (a resource – known by a URI)

◼ Object (a resource or a value)

◼ Predicate (a property – known by a URI)

◼ Uses XML namespace syntax

◼ Special namespace defined by the
standard – typically called rdf

38

RDF Types and Example

◼ Collections (containers)
◼ rdf:Bag
◼ rdf:Sequence
◼ rdf:Alternatives

◼ RDF Example
<?xml version='1.0' encoding='UTF-8'?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <rdf:Description rdf:about="http://www.wiley.com/SOC">
 <dc:title>Service-Oriented Computing</dc:title>
 <dc:creator>Munindar</dc:creator>
 <dc:creator>Michael</dc:creator>
 <dc:publisher>Wiley</dc:publisher>
 </rdf:Description>
</rdf:RDF>

39

Reification of Statements

◼ Reify: to make referenceable

◼ Needed to quote statements (e.g., to
agree or disagree with them); assert
modalities

◼ Make a statement into a resource; then
talk about it

◼ rdf:Statement is the class whose rdf:type
the given statement (object) is; additional
properties such as rdf:subject, rdf:object,
and rdf:predicate

40

RDF Schema

◼ Analogous to an object-oriented type
system built on top of RDF. Defines

◼ rdfs:Class, rdfs:subClassOf

◼ rdfs:Resource, rdfs:Literal

◼ rdfs:Property, rdfs:subPropertyOf

◼ rdfs:range, rdfs:domain

◼ rdfs:label, rdfs:comment, rdfs:seeAlso

41

Web Ontology Language (OWL)

◼ Provides the ability to specify classes
and properties in a form of description
logic with the terms in its expressions
related using Boolean operators
analogous to and, not, and or, as well
as the constraints on various properties

◼ OWL has 3 dialects: OWL Full, OWL DL,
and OWL Lite

42

Subclasses and Properties

<owl:Class rdf:ID="Mammal">
 <rdfs:subClassOf rdf:resource="#Animal"/>
 <owl:disjointWith rdf:resource="#Reptile"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="hasParent">

 <rdfs:domain rdf:resource="#Animal"/>

 <rdfs:range rdf:resource="#Animal"/>

</owl:ObjectProperty>

43

Constructing OWL Classes

◼ Explicitly (as the examples above) or

◼ Anonymously, using

◼ intersectionOf, unionOf, complementOf,
someValuesFrom, allValuesFrom,
minCardinality, and maxCardinality, e.g.,

<owl:Class rdf:ID='SugaryBread'>

 <owl:intersectionOf rdf:parseType='Collection'>

 <owl:Class rdf:about='#Bread'/>

 <owl:Class rdf:about='#SweetFood'/>

 </owl:intersectionOf>

</owl:Class>

44

OWL Restrictions

<owl:Restriction>

 <owl:onProperty rdf:resource="#hasFather"/>

 <owl:maxCardinality
rdf:datatype="xsd:nonNegativeInteger">

 1

 </owl:maxCardinality>

</owl:Restriction>

<owl:Restriction>

 <owl:onProperty rdf:resource='#bakes'/>

 <owl:someValuesFrom rdf:resource='#Bread'/>

</owl:Restriction>

45

OWL Axioms

<owl:AllDifferent>

 <owl:distinctMembers rdf:parseType='Collection'>

 <ex:Country rdf:ID='Russia'/>

 <ex:Country rdf:ID='India'/>

 <ex:Country rdf:ID='USA'/>

 <owl:distinctMembers/>

</owl:AllDifferent>

<ex:Country rdf:ID='Iran'/>

<ex:Country rdf:ID='Persia'>

 <owl:sameIndividualAs rdf:resource='#Iran'/>

</ex:Country>

46

Common Ontologies

◼ A shared representation is essential to
successful communication and coordination

◼ For humans: physical, biological, and social world

◼ For computational agents: common ontology
(terms used in communication)

◼ Representative efforts are

◼ Cyc (and Opencyc)

◼ WordNet (Princeton)

◼ Several upper-level ontologies, e.g., IEEE SUMO
and MILO

47

Ontologies and Articulation Axioms

Seating

Arrangement

Airplane

Transportation

Device

nonNegativeInteger

seats

nonNegativeInteger

range

numpassengers

Airliner

Flight

Airport

to from

equipment

Commercial

Transportation

Device

Public

Transportation

Device

Itinerary

Location
Class of

Service

class

to Leg

from

uses

1
*

Boeing

777

JumboJet

Common

Ontology

Travel Agent Service

User’s Agent

Mappings, i.e.,
articulation axioms

(shown by dotted
lines), describe the

relationships between
matching concepts in
two ontologies

48

Mappings among Ontologies

◼ Term-to-term (one-to-one), e.g.,
hookupWireO1 = wireO2

◼ Many-to-one, e.g.,
solidWireO1(x, size, color) Æ strandedWireO1(x, size, color)

= wireO2(x, size, color, (Stranded|Solid))

◼ Many-to-many, e.g.,
solidBlueWireO1(x, size) Æ

solidRedWireO1(x, size) Æ

strandedBlueWireO1(x, size) Æ

strandedRedWireO1(x, size)

=

solidWireO2(x, size, (Red|Blue)) Æ

strandedWireO2(x, size, (Red|Blue))

49

3: Engagement

50

Transactions

◼ A transaction is a computation (i.e.,
program in execution) that accesses
and possibly modifies a DB:

◼ Can be interleaved with other transactions

◼ But guarantees certain properties

The purpose of the transaction concept is
to avoid the problems that may arise
from interleaving

51

ACID Properties

◼ These formalize the notion of one
operation
◼ (Failure) Atomicity—all or none—if failed

then no changes to DB or messages

◼ Consistency—don't violate DB integrity
constraints: execution of the op is correct

◼ Isolation (Atomicity)—partial results are
hidden

◼ Durability—effects (of transactions that
"happened" or committed) are forever

52

Transactions over Composed Services

Two main kinds of service agreements are possible:

◼ execution, e.g., LDB retains full control on execution
even if in conflict with CTM

◼ communication, e.g., LDB decides what (control)
information to release

CTM

LDB LDB

service service

Composed
service as a
transaction

Local
transactions

United Sheraton

Expedia

53

Compositional Serializability

Transactions throughout the system should be serializable.
◼ CTM ensures that the composed transactions are serializable.
◼ This doesn't guarantee compositional serializability, because of

indirect conflicts:
◼ CTM does T1: r1(a); r1(c)
◼ CTM does T2: r2(b); r2(d)
◼ LDB1 does T3: w3(a); w3(b)
◼ LDB2 does T4: w4(c); w4(d)
◼ Since T1 and T2 are read-only, they are serializable.
◼ LDB1 sees S1=r1(a); c1; w3(a); w3(b); c3; r2(b); c2
◼ LDB2 sees S2=w4(c); r1(c); c1; r2(d); c2; w4(d); c4
◼ Each LDB has a serializable schedule; yet jointly they put T1 before

and after T2

◼ Notice we would have lots of potential compositions, so the
problem is worse.

54

Achieving Business Interoperation

The parties must

◼ Know each other’s identity and location (presumes
suitable directories)

◼ Agree on the low-level transport protocols and
encoding formats

◼ Agree on the syntax and semantics of documents to
be exchanged

◼ Agree on their expectations about when different
documents will be sent and received

◼ This specification is termed a business protocol

◼ An instance of a business protocol is a conversation (but
sometimes the term is used to mean protocol – watch out!)

55

Process Abstractions

Orchestration: A process is a partial order of actions
(activity graph, script) under the control of a central
conductor; akin to a workflow [Global; central]

Choreography: A process is an exchange of messages
among participants; akin to a conversation as
described by WSCL and WS-CDL [Global;
distributed]

Collaboration: A process is a joint set of activities
among business partners [Local; distributed]

Workflow: a narrower concept than a process, which
emphasizes control flows and data flows from a
central perspective; usually tool-specific

WS-CDL

◼ WS-CDL describes the external
observable behavior of multiple
participants from a global model
perspective

◼ Based on pi-calculus

56January 2009

57

Processes and Workflows

BPEL4WS
OWL-S Service

Model

ebXML

CPA

Process and workflow

orchestrations

QoS: Service

descriptions and bindings

Contracts and

agreements

XLANG

WSCL

WSDL
ebXML

CPP

ebXML

BPSS

XML, DTD, and XML Schema

HTTP, FTP, SMTP, SIP, etc.

SOAP
ebXML

messaging

OWL

UDDI
ebXML

Registries

WSCL
WS-CDL

WS-Coordination

WS-AtomicTransaction and WS-

BusinessActivity

OWL-S Service

Grounding

OWL-S Service

Profile

BTP

BPML

Discovery

Messaging

Transport

QoS: Conversations

QoS: Choreography

QoS: Transactions

Encoding

WS-Policy

WS-Security

WS-Reliable

Messaging

PSL

RDF

58

Describing Dynamics with UML

UML provides graphical constructs that can be used to
describe (1) actions and activities, and (2) temporal
precedence and control flows. The allowable control
constructs are

◼ Sequence: a transition from one activity to the next
in time

◼ Branch: a decision point among alternative flows of
control

◼ Merge: where two or more alternative flows of
control rejoin

◼ Fork: a splitting of a flow of control into two or more
concurrent and independent flows of control

◼ Join: a synchronization of two or more concurrently
executing flows of control into one flow

59

UML Activity Diagram

Receive PO

Get Items from InventoryUpdate Customer Profile

Compute Subtotal

Compute Shipping Cost

Compute Export Tax

Compute International Shipping

Compute Total

[ship within US] [ship outside US]

Ship Order

Fork

Join

Branch

Merge

Implementation of
a vendor’s
purchase process

60

Flow Interoperability Patterns

Process 1 Process 2

Process 1 Process 2Process 2Process 1

ActionState 1

ActionState 2

ActionState A

Chained Interoperability

ActionState 1

ActionState 2

ActionState A

Nested Interoperability

ActionState 1

ActionState 2

ActionState C

Synchronized Interoperability

ActionState 3

ActionState B

ActionState A

ActionState 3

◼ Chained

◼ Nested

◼ Synchronized

◼ What guarantees
would you obtain
from each?

◼ How would you
accommodate
exceptions in each?

61

BPEL4WS Metamodel

-name

-property

CorrelationSet
CompensationHandler

-name

Process Activity

-myRole

-serviceLinkType

-name

Partner

-messageType

-name

Container

-faultContainer

-faultName

FaultHandler
Reply

62

A BPEL4WS process is a composite Web service
with a WSDL description

Web Service

portType

portType

portType

<receive>

<receive>

<reply>

<reply>

BPEL4WS

Process

63

Electronic Business Extensible Markup
Language (ebXML)

◼ Established by UN-CEFACT (United Nations
Centre for Trade Facilitation and Electronic
Business) and OASIS (Organization for the
Advancement of Structured Information
Standards)

◼ Provides specifications to define standard
business processes, exchange business
messages and enter into trading agreements

◼ Motivations:
◼ Global standard for companies of all sizes

◼ Automate finding business partners

64

ebXML Vocabulary

◼ Unified Modeling Methodology (UMM)
◼ Specialized UML for Business Processes

◼ Collaboration Protocol Profile (CPP)
◼ Describes a business’s profile, i.e., which business

processes it supports, its roles in those processes,
the messages exchanged, and the transport
mechanism for the messages (e.g., HTTPS)

◼ Collaborative Partner Agreement (CPA)
◼ Intuitively, like an intersection of two CPPs

◼ Technical agreement between two or more
partners

◼ May be legally binding

65

Design of an ebXML System

Business

Organization A

ebXML Process

Specification

Document

Implement

ebXML

CPA and CPP

Specifications

ebXML Business

Service Interface

Configuration

Publis
h C

olla
bora

tio
n

Pro
to

col P
ro

fil
e

Request ebXML

Specs

Receive ebXML

Info

Business

Process

Business

Scenarios

Business

Profiles

ebXML Repository

Business Process

and Information

Model

(UMM or PSL)

Business

Organization B

ebXML Process

Specification

Document

Implement

ebXML

CPA and CPP

Specifications

ebXML Business

Service Interface

Configuration

Business Process

and Information

Model

(UMM or PSL)

Request ebXML

Specs

Receive ebXML

Info
Publish Collaboration

Protocol Profile

CPA Information

66

Web Ontology Language – Services (OWL-S)

An OWL-S service description provides

◼ Declarative ads for properties and
capabilities, used for discovery

◼ Declarative APIs, used for execution

◼ A declarative description of services

◼ Based on their inputs, outputs,
preconditions, and effects

◼ Used for composition and interoperation

67

OWL-S Service Ontology

Service

ServiceGrounding

Resource

ServiceModel

ServiceProfile

provides

supports presents

describedBy

68

OWL-S Service Model
Resource Service

ServiceProfile ServiceGrounding

ProfileProcess

AtomicProcess SimpleProcess CompositeProcess

ControlConstruct

ServiceModel

ProcessComponent

input

precondition

output

effect

provides

presents describedBy supports

hasProfile

realizes expand

components

computedInput

computedEffect

invocable

computedOutput

composedBy

computedPrecondition

Sequence Split RepeatUnit
. . .

QualityRating

ServiceCategory
Actor

ParameterDescription

ServiceParameterThe part from
Process on down
is how OWL-S
captures the
process model of
a service

69

OWL-S Example: Processing Book Orders

Create

Account

Load

Account

Choose

Book

Add to

Order

Select

Credit Card

Charge

Credit Card

Book Store

Sequence Process

Selection Process Iteration Process Choice Process

Choice Process

70

OWL-S IOPEs for Bookstore Example

71

5: Collaboration

72

Agents and MAS for SOC

Why the interest in agents for services?
◼ Need for autonomy, heterogeneity, dynamism

◼ Need for high-level abstractions for engineering

Unlike objects, agents

◼ Know about themselves, their users, and their
competitors

◼ Use and reconcile ontologies

◼ Are proactive and autonomous

◼ Form commitments and communicate

◼ Can be cooperative

73

What is an Agent?

The term agent in computing covers a wide
range of behavior and functionality.

◼ An agent is an active computational entity
(could be implemented as an object with a
thread)

◼ With a persistent identity

◼ Perceives, reasons about, and initiates
activities in its environment

◼ Communicates (with other agents) and
changes its behavior based on others

◼ These features make agents a worthwhile
metaphor in computing

74

Agent Abstractions: 1

◼ The traditional abstractions are from AI
and are mentalistic

◼ Beliefs: agent’s representation of the world

◼ Knowledge:

◼ (Usually just) true beliefs

◼ Justifications are sometimes considered

◼ Desires: preferred states of the world

◼ Goals: consistent desires

◼ Intentions: goals adopted for action

75

Agent Abstractions: 2

◼ The agent-specific abstractions are
inherently interactional

◼ Social: about collections of agents

◼ Organizational: about teams and groups

◼ Ethical: about right and wrong actions

◼ Legal: about contracts and compliance

76

Agent Abstractions: 3

Agents, when properly understood

◼ Lead naturally to multiagent systems

◼ Contrary to the traditional economic man,
Robinson Crusoe, who thinks of everything
else (even people) as just a resource

◼ Provide a means to capture the
fundamental abstractions that apply in
all major applications and which are
otherwise ignored by system builders

77

A Reactive Agent in an Environment

Perceive

Environment

Select Action

Environment

Condition-

Action Rules

Effectors

Sensors

percepts

action

world

model

outputs

inputs

Reactive

Agent

Environment e;
RuleSet r;
while (true) {
 state = senseEnvironment(e);
 a = chooseAction(state, r);
 e.applyAction(a);
}

78

Characteristics of Agent Environments

◼ Observability: can all aspects relative to actions be
sensed?

◼ Determinism: is the next state completely determined
by the current state and the agent’s action?

◼ History Freedom: does action choice depend on
previous episodes or just the current episode?

◼ Dynamism: can environment change while agent is
deliberating?

◼ Continuity: do the agent actions, environment state
variables, and time points have a continuous range of
values?

◼ Multiagent: is the agent aware of others that can
affect the environment?

79

Reactive Architecture

◼ Seeks to produce intelligent behavior without
explicit

◼ Symbolic representations

◼ Abstract reasoning

◼ Intelligence is an emergent property of
certain complex systems (depends on the
environment too, not just the agent)

◼ Cannot plan to drive a car to full detail

◼ Reactively avoiding collisions while heading
toward an attractor indicates intelligence

80

A Rational Agent

Rationality depends on...

◼ The performance measure for success,
usually taken as utility

◼ What the agent has perceived so far

◼ What the agent knows about the
environment

◼ The actions the agent can perform

An ideal rational agent: for each possible
percept sequence, it acts to maximize its
expected utility, on the basis of its knowledge
and the evidence from the percept sequence

81

Cognitive Architecture for an Agent

Beliefs, Desires, Intentions

Reasoner

Effectors

Sensors

Perceptions

Actions

Agent Alice

Beliefs, Desires, Intentions

Reasoner

Effectors

Sensors

Perceptions

Actions

Agent Bob

Communication

Infrastructure

Communication

Interfaces

Called a BDI (beliefs, desires, intentions) architecture

Like the reactive architecture at a coarse level, but with two
differences:
•Cognitive representations
•Deeper reasoning based on the above representations

BDI: A Cognitive Single-Agent Architecture

◼ Beliefs: constitute an agent’s
representation of the world

◼ Knowledge: (usually) true beliefs

◼ Desires: an agent’s preferred states of
the world

◼ Goals: consistent desires

◼ Intentions: goals adopted for action,
i.e., what the agent has chosen to do

12/29/2024 1:50:07 PM © Michael N. Huhns 82

Properties of Cognitive Theories

◼ Beliefs are mutually consistent (this can be a
demanding property to realize in a practical system
and usually requires an agent’s beliefs to be
restricted in some way)

◼ An agent will intend an action only while it believes
the action is possible

◼ An agent need not intend something that would
happen anyway

Designers ascribe these properties to an agent, and
then link them to the agent’s sensors and effectors,
while considering the relationships from the sensors
and effectors to the environment

12/29/2024 1:50:07 PM © Michael N. Huhns 83

84

Dimensions of MAS: Agent

Adaptivity (the ability of an agent to learn):

Autonomy:

Interactions:

Sociability (awareness):

Fixed Teachable Autodidactic

Controlled Independent

Simple Complex

Interdependent

Autistic CollaborativeCommitting

85

Dimensions of MAS: System

Scale (the number of agents):

Interactions:

Coordination (self interest):

Agent Heterogeneity:

Communication Paradigm:

Individual Committee Society

Reactive Planned

Antagonistic AltruisticCollaborative

Competitive Cooperative Benevolent

Identical Unique

Point-to-Point Multi-by-name/role Broadcast

86

(de facto) Standard Agent Types

User Agents
Application Programs

Directory and Broker

Agents

Execution or Data

Manager Agents
Ontology Agents

Database Resource

Agents
Internet Data Agents

Structured Data

Unstructured Data

87

FIPA

◼ FIPA was the Foundation for Intelligent
Physical Agents (www.fipa.org)

◼ Now an IEEE standards group

◼ Specifies standards for heterogeneous,
interoperating agent-based systems.

◼ Concerned with agency as it relates to

1. Autonomy (goal-driven)

2. Communal integration; mostly
communication, but also cooperation.

http://www.fipa.org/

88

Consistency Maintenance across Services

A truth maintenance system (TMS)

◼ Maintains justifications and explains the results of its
deductions

◼ Updates KB (knowledge base) incrementally when
data are added or removed

◼ Performs a form of propositional deduction

TMSs are important because they

◼ deal with atomicity: all required changes are made to
the KB before anyone can read it

◼ deal with the frame problem: the parts of the KB that
are not affected by a revision are not modified

◼ lead to efficient search: by using justifications to
perform dependency-directed backtracking

89

Architecture of TMS-Based Agent

◼ The problem solver represents domain knowledge in
the form of rules, procedures, etc. and chooses what
to focus on next

◼ The TMS keeps track of the current state of the
search for a solution. It uses constraint satisfaction to
maintain consistency in the inferences made by the
problem solver

Problem
Solver

TMS

justifications

beliefs

90

Organizations

◼ Organizations are larger-scale than single
agent, goal-oriented, and with knowledge
and memory beyond individual agents

◼ Organizations help overcome the
limitations of agents in
◼ Reasoning

◼ Capabilities

◼ Perception

◼ Lifetime and persistence

◼ Concretely, organizations consist of agents
acting coherently

◼ Abstractly, organizations consist of roles
and commitments among the roles – these
form a sphere of commitment

91

Legal Concepts

◼ Traditional AI has a single-agent slant

◼ Because law involves the interactions of
citizens with one another and with the
government, the legal abstractions have
been rich in multiagent concepts

◼ Traditional formalisms for legal
reasoning, however, are often single-
agent in orientation, e.g., deontic logic
(the logic of obligation, “obliged to do
p”)

92

Contracts

◼ Much of the law is about the creation
and manipulation of contracts among
legal entities

◼ People

◼ Corporations

◼ Governmental agencies

The law is the study of how to break
contracts!

93

Motivation

The legal abstractions provide a basis for
agents to enter into contracts, e.g.,
service agreements, with each other

◼ Contracts

◼ Are about behavior: restrict autonomy

◼ Important in open environments

◼ About behavior

◼ Generally not about implementations

Commitments: A Basis for Multiple Agents

◼ Binary relationships binding two agents

◼ ‘Debtor’ agent

◼ ‘Creditor’ agent

◼ Represent the agreements between
agents

12/29/2024 1:50:07 PM © Michael N. Huhns 94

95

Commitments for Contracts

Commitments capture contracts. Importantly,
commitments are

◼ Public (unlike beliefs and intentions)

◼ Can be used as the basis for compliance

◼ Contracts apply between parties, in a context

◼ Other approaches are:

◼ Single-agent focused, e.g., deontic logic

◼ Don’t handle organizational aspects of contracts

◼ Don’t accommodate manipulation of contracts

96

Manipulating Commitments

◼ Operations on commitments:
◼ Create

◼ Discharge (satisfy)

◼ Cancel

◼ Release (eliminate)

◼ Delegate (change debtor)

◼ Assign (change creditor)

◼ Metacommitments constrain the
manipulation of commitments

Commitment Types

12/29/2024 1:50:07 PM © Michael N. Huhns 97

Discrete
Commitment

Continuous
Commitment

Continuous
Commitment

BDICTL* - Syntax and Semantics

Kripke Structure:

 M =  S, R, Ba, Da, Ia, L
◼ S is a set of states

◼ R is a binary relation R  S x S

◼ L : S → PowerSet(AtomicPropositions) is a
labeling that associates with each state s an
interpretation L(s) of all atomic propositions at
state s

 The relations Ba, Da, and Ia map the agent’s
current situation to its belief, desire, and
intention-accessible worlds

12/29/2024 1:50:07 PM © Michael N. Huhns 98

Our Formalization

Creating a Commitment,

 Create(a, C(d, a, b, p, S))

◼ M ╞m Create(a, C(d, a, b, p, S)) 
ABa((XG(active(C))) U (satisfied(C) V
breached(C) V canceled(C)))

 For all paths, agent a believes that from
the next moment onwards commitment
C will be active until it is either satisfied
or breached or canceled

12/29/2024 1:50:07 PM © Michael N. Huhns 99

Creating a Commitment

◼ M ╞m Create(a, C(d, a, b, p, S)) 
ABaF(satisfied(C))

 For all paths, agent a believes that
commitment C will eventually be satisfied

◼ M ╞m Create(a, C(d, a, b, p, S)) 
AXG((Ia(C)) U (satisfied(C) V breached(C) V
canceled(C)))

 For all paths from the next moment onwards,
agent a intends the commitment C until it is
either satisfied or breached or canceled

12/29/2024 1:50:07 PM © Michael N. Huhns 100

Creating a Commitment

◼ M ╞m Create(a, C(d, a, b, p, S))  ABa((XG(Db(C)))
U (satisfied(C) V canceled(C)))

 For all paths, agent a believes that from the next
moment onwards agent b desires commitment C until
it is either satisfied or canceled

◼ M ╞m Create(a, C(d, a, b, p, S)) 
ABb((XG(active(C))) U (satisfied(C) V breached(C) V
canceled(C)))

 For all paths, agent b believes that from the next
moment onwards commitment C will be active until it
is either satisfied or breached or canceled

12/29/2024 1:50:07 PM © Michael N. Huhns 101

Creating a Commitment

◼ M ╞m Create(a, C(d, a, b, p, S)) 
ABb((XG(Ia(C))) U (satisfied(C) V breached(C)
V canceled(C)))

 For all paths, agent b believes that from the
next moment onwards agent a intends
commitment C until it is either satisfied or
breached or canceled

◼ M ╞m Create(a, C(d, a, b, p, S)) 
ABbF(satisfied(C))

 For all paths, agent b believes that
commitment C will eventually be satisfied

12/29/2024 1:50:07 PM © Michael N. Huhns 102

Creating a Commitment

◼ M ╞m Create(a, C(d, a, b, p, S)) 
AXG((Db(C)) U (¬active(C)))

 For all paths from the next moment
onwards, agent b desires commitment
C until it becomes inactive

◼ Note: agent b cannot intend C to be
satisfied, because it has no control over
C

Other commitment operations: similar

12/29/2024 1:50:07 PM © Michael N. Huhns 103

104

SoCom: Sphere of Commitment

◼ An organization that provides the context or
scope of commitments among
◼ Roles (abstract SoCom) at design time

◼ Agents (concrete SoCom) at run time

◼ A SoCom, especially at run time
◼ Serves as a witness for the commitment, i.e.,

knows that the commitment exists

◼ Helps validate commitments and test for
compliance

◼ Offers compensations to undo members’ actions,
e.g., to handle exceptions

105

Policies and Structure

◼ Spheres of commitment (SoComs)

◼ Abstract specifications of societies

◼ Made concrete prior to execution

◼ Policies apply on performing social actions

◼ Policies relate to the nesting of SoComs

◼ Role conflicts can occur when agents play
multiple roles, e.g., because of nonunique
nesting

106

Commitment Protocols

◼ Protocols enable open systems to be
constructed

◼ Interaction protocols expressed in terms of
◼ Participants’ commitments

◼ Actions for performing operations on commitments
(to create and manipulate them)

◼ Constraints on the above, e.g., captured in
temporal logic

◼ Examples: escrow, payment, RosettaNet (107
request-response PIPs)

107

Message Patterns for Commitment Operations

◼ For efficient checking, ensure that the discharge of a commitment is
reachable from its create (discharge has a greater vector timestamp
than create)

◼ That is, ensure that information about commitment operations flows to
the right parties

◼ The patterns below accomplish this by sending extra messages for
delegate (add message x to y) and assign (add message y to z)

x y z

create(x,c)

delegate(x,z,c)

delegate(x,z,c)

discharge(x,c)

x y z

create(x,c)

assign(x,y,z)

discharge(x,c)

assign(x,y,z)

108

Compliance with Protocols

Compliance means all commitments are taken
care of (discharged directly or indirectly)

◼ How can we check if the agents comply with
specified protocols?
◼ Coordination aspects: traditional techniques
◼ Commitment aspects: representations of the

agents’ commitments in temporal logic

◼ Commitment protocols are specified in terms
of
◼ Main roles and sphere of commitment
◼ Roles essential for coordination
◼ Domain-specific propositions and actions

109

Negotiation

Negotiation is central to adaptive, cooperative
behavior

◼ Negotiation involves a small set of agents

◼ Actions are propose, counterpropose,
support, accept, reject, dismiss, retract

◼ Negotiation requires a common language and
common framework (an abstraction of the
problem and its solution)

110

Negotiation Mechanism Attributes

◼ Efficiency

◼ Stability

◼ Simplicity

◼ Distribution

◼ Symmetry

e.g., sharing book purchases, with cost
decided by coin flip

111

Negotiation among Utility-Based Agents

Problem: How to design the rules of an
environment so that agents interact
productively and fairly, e.g.,

◼ Vickrey’s Mechanism: lowest bidder
wins, but gets paid second lowest bid
(this motivates telling the truth?? and is
best for the consumer??)

112

Negotiation

◼ A deal is a joint plan between two agents that would
satisfy their goals

◼ The utility of a deal for an agent is the amount he is
willing to pay minus the cost to him of the deal

◼ The negotiation set is the set of all deals that have a
positive utility for every agent. The possible
situations for interaction are
◼ Conflict: the negotiation set is empty

◼ Compromise: agents prefer to be alone, but will agree to a
negotiated deal

◼ Cooperative: all deals in the negotiation set are preferred by
both agents over achieving their goals alone

113

Negotiation Mechanism

The agents follow a Unified Negotiation Protocol, which
applies to any situation. In this protocol,

◼ The agents negotiate on mixed-joint plans, i.e., plans
that bring the world to a new state that is better for
both agents

◼ If there is a conflict, they “flip a coin” to decide which
agent gets to satisfy his goal

114

Agent Communication Language (ACL)

What is the semantics of queries, requests, promises?

◼ Mentalist: each agent has a knowledge base that its
messages refer to

◼ An agent promises something if it intended to make the
content of that promise come true

◼ Public: semantics depends on laws, protocols, and
observable behavior

◼ An agent promises something if it says so in the appropriate
circumstances

◼ Evaluation: For open systems, public semantics is
appropriate, because a semantics without compliance
doesn’t make sense

115

Syntax, Semantics, Pragmatics

Consider communication as synonymous with message
passing

◼ Syntax: requires a common language to represent
information and queries, or languages that are
intertranslatable

◼ Semantics: requires a structured vocabulary and a
shared framework of knowledge-a shared ontology

◼ Pragmatics: is usually context-sensitive

◼ Knowing whom to communicate with and how to find them

◼ Knowing how to initiate and maintain an exchange

◼ Knowing the effect of the communication on the recipient

116

Speech Act Theory

Speech act theory, developed for natural language,
views communication as action

◼ Differs from traditional logic

◼ Considers three aspects of a message:

◼ Locution, or how it is phrased, e.g., "It is hot here" or "Turn on

the air conditioner"

◼ Illocution, or how it is meant by the sender or understood by
the receiver, e.g., a request to turn on the air conditioner or an

assertion about the temperature

◼ Perlocution, or how it influences the recipient, e.g., turns on

the air conditioner, opens the window, ignores the speaker

Illocution is the core aspect

117

Speech Act Theory Applied

◼ Classifications of illocutions motivate message types,
but are typically designed for natural language

◼ Rely on NL syntax, e.g., they conflate directives and
prohibitives

◼ Most research in speech act theory is about
determining the agents’ beliefs and intentions, e.g.,
how locutions map to illocutions

◼ For services and agents, determining the

◼ Message type is trivial, because it is explicitly encoded

◼ Agents’ beliefs and intentions is impossible, because the
internal details of the agents are not known

118

Patterns and Protocols

Requester

Requester

Requester

Provider

Provider

Provider

Synchronous: a blocking query waits for an expected reply

Provider maintains state; replies sent individually when requested

Asynchronous: a nonblocking subscribe; replies sent as available

Query

Reply

Next

Handle

Query

Reply

Next

Reply

Subscribe

Reply

Reply

Reply

119

The Contract Net Protocol

An important generic
protocol

◼ Manager announces tasks
via a (possibly selective)
multicast

◼ Agents evaluate the
announcement. Some
submit bids

◼ Manager awards a contract
to the most appropriate
agent

◼ Manager and contractor
communicate privately as
necessary

120

Combining Agents with Traditional Web Services

Web

Service Agent

Gateway

Web Service

Client

SOAP

Request

SOAP

Response

Agent

ACL

Request

ACL

Inform

5: Discovery and Selection

122

Discovery versus Selection

◼ Often the purpose behind discovering a
service is to select a good one

◼ We don’t need to find all services

◼ Just the one that’s best for us!

◼ By focusing on selection, we can

◼ Reduce irrelevant results

◼ Reduce irrelevant traffic and management

◼ Improve the payoff

123

Recommending Products vs. Services

◼ Products (by a product vendor)

◼ The recommender is the provider

◼ Votes are known to recommender

◼ Votes are given prior to usage (buying)

◼ Repetition is less likely (buy the same book)

◼ Services (by a service registry)

◼ The recommender is not the provider

◼ Votes are not necessarily known to recommender

◼ Votes are given after usage

◼ Repetition can occur but not known to registry

124

Reputation

The agency (e.g., eBay) is the authority that

◼ Authenticates users

◼ Records, aggregates, and reveals ratings

◼ Provides the conceptual schema for

◼ How to capture ratings (typically a number and
text)

◼ How to aggregate them

◼ How to decay them over time

January 2007 125

Social Networks and Referral Chains

◼ Referral chains provide:

◼ Way to judge the quality of an expert's
advice

◼ Reason for the expert to respond in a
trustworthy manner

Social networks induce referral chains in
which an individual may participate

◼ As the chains get longer

◼ The trustworthiness of a recommendation
decreases

◼ The effort to find experts increases

◼ Therefore, shorter chains are better

126

6: Synthesis

127

Two Patterns for Engineering Service Applications

Task1

Task2

Task3

Task4

Task5

Task6

Task7

WebService1 WebService2 WebServiceN. . .

Discovering, Matching, Planning, Composing

Repository/Directory of Services

Discovering, Matching, Planning, Composing

Goal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

SubgoalSubgoal

128

Advanced Composition: 1

◼ Suppose an application needs simply to sort
some data items, and suppose there are 5
Web sites that offer sorting services
described by their input data types, output
date type, time complexity, space complexity,
and quality:
◼ One is faster

◼ One handles more data types

◼ One is often busy

◼ One returns a stream of results,
another a batch

◼ One costs less

Application

Sort1

Sort2

Sort3

Sort4

Sort5
??

?

?

129

Advanced Composition: 2

◼ Possible approaches
◼ Application invokes services randomly until one succeeds

◼ Application ranks services and invokes them in order until
one succeeds

◼ Application invokes all services and reconciles the results

◼ Person organizes all services into one service using
BPEL4WS

◼ Application contracts with one service after requesting bids

◼ Services self-organize into a team of sorting services and
route requests to the best one

◼ The last two require that the services behave like
agents

◼ The last two are scalable and robust

130

Elements of Service-Oriented Architectures

◼ Loose coupling: focus should be on high-level
contractual relationships

◼ Implementation neutrality: the interface is what
should matter

◼ Flexible configurability: late binding of components

◼ Long lifetime: components should exist long enough
to be discovered, to be relied upon, and to engender
trust in their behavior

◼ Granularity: interactions and dependencies should
occur at as high a level as possible

◼ Teams: computation in open systems should be
conceptualized as business partners working as a
team

131

Systemic Trust

◼ Fundamentally
◼ The information agents retrieve must be

accurate, or characterized accurately

◼ The information agents contribute must
be used appropriately

◼ Requires
◼ Sources have reliability and reputation,

and specify constraints on usage

◼ Dependencies are preserved and
maintained

◼ Results: information items have
credibility and domains of utility;
agents self-organize into service
communities

132

Trust

Ultimately, what we would like is to trust
Semantic Web services. Trust involves
services that

◼ Are understood in context

◼ Have the right capabilities and understanding of
needs

◼ Follow legal contracts where specified

◼ Support one’s organization or society

◼ Follow an understood ethics

◼ Failing all else, behave rationally

133

Summary

Multiagent System Properties Benefits for Service Development

Autonomous, objective-oriented
behavior; agent-oriented decomposition

Autonomous, active functionality that
adapts to the users’ needs; reuse of whole
subsystems and flexible interactions

Dynamic composition and
customization

Scalability

Interaction abstractions; statistical or
probabilistic protocols

Friction-free software; open systems;
interactions among heterogeneous
systems; move from sophisticated and
learned e-commerce protocols to dynamic
selection of protocols

Multiple viewpoints, negotiation, and
collaboration

Robustness and reliability

Social abstractions High-level modeling abstractions

134

To Probe Further

◼ IEEE Internet Computing,
http://computer.org/internet

◼ DAI-List-Request@engr.sc.edu

◼ (International Joint Conference and Journal)
Autonomous Agents and Multiagent Systems

◼ Conferences on Semantic Web, Web Services,
Service-Oriented Computing, Service
Computing, World-Wide Web

◼ Book: Singh & Huhns, Service-Oriented
Computing, John Wiley & Sons, 2005

	Slide 1: Agents and the Semantic Web
	Slide 2: Outline of this Tutorial
	Slide 3: 1: Introduction
	Slide 4: The Web As Is
	Slide 5: Which Semantic Web?
	Slide 6: What is a Web Service?
	Slide 7: Viewpoints on Services
	Slide 8: Open Environments: Characteristics
	Slide 9: Autonomy (Usage)
	Slide 10: Heterogeneity (Construction)
	Slide 11: Dynamism (Configuration)
	Slide 12: Simple B2C Web Service Example
	Slide 13: Database Approach (Closed)
	Slide 14: Approach for Open Environment
	Slide 15: Web Services: Basic Architecture
	Slide 16: SOAP: Simple Object Access Protocol
	Slide 17: WSDL: Web Services Description Language
	Slide 18: Directory Services
	Slide 19: UDDI: Universal Description, Discovery, and Integration
	Slide 20: Basic Profile (BP 1.0)
	Slide 21: Example of Current SOA Success
	Slide 22: A Source for Research Ideas: What Are the Limitations of the WS Triangle?
	Slide 23: Still Missing…
	Slide 24: Why Agents for Web Services?
	Slide 25: 2: Description
	Slide 26: Modeling and Composing Services
	Slide 27: Dimensions of Abstraction: 1
	Slide 28: Dimensions of Abstraction: 2
	Slide 29: Dimensions of Abstraction: 3
	Slide 30: Dimensions of Abstraction: 4
	Slide 31: Description Dimensions for a Web Service
	Slide 32: Behavioral Constraints for Stock Quote Service
	Slide 33: Java Client for Stock Purchase
	Slide 34: JUnit Test for Stock Quote Behavior
	Slide 35: Ontology
	Slide 36: Exercise: Which Conceptualization Has More Expressive Power?
	Slide 37: RDF Statements
	Slide 38: RDF Types and Example
	Slide 39: Reification of Statements
	Slide 40: RDF Schema
	Slide 41: Web Ontology Language (OWL)
	Slide 42: Subclasses and Properties
	Slide 43: Constructing OWL Classes
	Slide 44: OWL Restrictions
	Slide 45: OWL Axioms
	Slide 46: Common Ontologies
	Slide 47: Ontologies and Articulation Axioms
	Slide 48: Mappings among Ontologies
	Slide 49: 3: Engagement
	Slide 50: Transactions
	Slide 51: ACID Properties
	Slide 52: Transactions over Composed Services
	Slide 53: Compositional Serializability
	Slide 54: Achieving Business Interoperation
	Slide 55: Process Abstractions
	Slide 56: WS-CDL
	Slide 57: Processes and Workflows
	Slide 58: Describing Dynamics with UML
	Slide 59: UML Activity Diagram
	Slide 60: Flow Interoperability Patterns
	Slide 61: BPEL4WS Metamodel
	Slide 62: A BPEL4WS process is a composite Web service with a WSDL description
	Slide 63: Electronic Business Extensible Markup Language (ebXML)
	Slide 64: ebXML Vocabulary
	Slide 65: Design of an ebXML System
	Slide 66: Web Ontology Language – Services (OWL-S)
	Slide 67: OWL-S Service Ontology
	Slide 68: OWL-S Service Model
	Slide 69: OWL-S Example: Processing Book Orders
	Slide 70: OWL-S IOPEs for Bookstore Example
	Slide 71: 5: Collaboration
	Slide 72: Agents and MAS for SOC
	Slide 73: What is an Agent?
	Slide 74: Agent Abstractions: 1
	Slide 75: Agent Abstractions: 2
	Slide 76: Agent Abstractions: 3
	Slide 77: A Reactive Agent in an Environment
	Slide 78: Characteristics of Agent Environments
	Slide 79: Reactive Architecture
	Slide 80: A Rational Agent
	Slide 81: Cognitive Architecture for an Agent
	Slide 82: BDI: A Cognitive Single-Agent Architecture
	Slide 83: Properties of Cognitive Theories
	Slide 84: Dimensions of MAS: Agent
	Slide 85: Dimensions of MAS: System
	Slide 86: (de facto) Standard Agent Types
	Slide 87: FIPA
	Slide 88: Consistency Maintenance across Services
	Slide 89: Architecture of TMS-Based Agent
	Slide 90: Organizations
	Slide 91: Legal Concepts
	Slide 92: Contracts
	Slide 93: Motivation
	Slide 94: Commitments: A Basis for Multiple Agents
	Slide 95: Commitments for Contracts
	Slide 96: Manipulating Commitments
	Slide 97: Commitment Types
	Slide 98: BDICTL* - Syntax and Semantics
	Slide 99: Our Formalization
	Slide 100: Creating a Commitment
	Slide 101: Creating a Commitment
	Slide 102: Creating a Commitment
	Slide 103: Creating a Commitment
	Slide 104: SoCom: Sphere of Commitment
	Slide 105: Policies and Structure
	Slide 106: Commitment Protocols
	Slide 107: Message Patterns for Commitment Operations
	Slide 108: Compliance with Protocols
	Slide 109: Negotiation
	Slide 110: Negotiation Mechanism Attributes
	Slide 111: Negotiation among Utility-Based Agents
	Slide 112: Negotiation
	Slide 113: Negotiation Mechanism
	Slide 114: Agent Communication Language (ACL)
	Slide 115: Syntax, Semantics, Pragmatics
	Slide 116: Speech Act Theory
	Slide 117: Speech Act Theory Applied
	Slide 118: Patterns and Protocols
	Slide 119: The Contract Net Protocol
	Slide 120: Combining Agents with Traditional Web Services
	Slide 121: 5: Discovery and Selection
	Slide 122: Discovery versus Selection
	Slide 123: Recommending Products vs. Services
	Slide 124: Reputation
	Slide 125: Social Networks and Referral Chains
	Slide 126: 6: Synthesis
	Slide 127: Two Patterns for Engineering Service Applications
	Slide 128: Advanced Composition: 1
	Slide 129: Advanced Composition: 2
	Slide 130: Elements of Service-Oriented Architectures
	Slide 131: Systemic Trust
	Slide 132: Trust
	Slide 133: Summary
	Slide 134: To Probe Further

