
Au?”ang Wo#Iows k r
Sewke Order Processing
Integrating AI and Database Technologies
Munindar P. Singh and Mkhad W. Hukns, Mlcmlettronicr and Computer Tmhnology Corporation

developing a suite of technologies for inte-
grating heterogeneous information resources.
One of the project’s goals is an environment
for developing complex multisystem appli-
cations that access information stored in ex-
isting heterogeneous systems and that main-
tain consistency constraints across those
systems.

Integrating preexisting systems is gener-
ally harder than designing distributed systems
afresh. Many systems, especially those based
on older mainframe architectures, allow data
to be accessed only through arcane interfaces
of limited functionality. The systems and their
interfaces cannot be easily modified, due to
both the complexity of the programming ef-
fort required to achieve any modifications,
and the constraint that older applications must
continue to run as before, since they typically
have a wide user base that relies heavily upon
them. Thus, the integration must permit newly
developed applications to coexist with previ-
ous applications.

A workflow management facility is an im-
portant component of the Carnot Project.
Briefly, workflows are the structured activi-
ties or tasks that take place in typical busi-
ness information systems. These activities
frequently involve several database systems,
user interfaces, and application programs.

THIS ARCHITECTURE MARR~ES AIMPROACHES WZTH
STANDARD DATABASE TECHNIQUES TO M N A G E WORKFLOWS

LN A DISTRLBUTED COMPUTLNG ENVIRONMENT WHOSE
A C T M T E S INVOLVE SEVERAL DATABASE SYSTEMS, USER

IATEREACES, AND APPUCATION PROGRAMS.

Unfortunately, traditional database systems
do not support workflows well: People usu-
ally must intervene to ensure proper execu-
tion. If we could automate workflow pro-
cessing, we could improve turnaround time,
check initial input for errors, validate fields
with respect to other fields and information
in customer databases, streamline existing
procedures (by removing redundant data
gathering and processing), and gain the abil-
ity to modify the structure of the overall pro-
cedure easily.

We have developed an AI-based architec-
ture that automatically manages workflows,
and we have implemented a prototype that
executes on top of a distributed computing
environment to help a telecommunications
company better provide a service that re-
quires coordination among many operation
support systems and network elements.

Databum transactions

Classical transaction processing in data-
bases deals with executing access and update
tasks on a single database. Such tasks are tra-
ditionally assumed to have the so-called
ACID properties:’

0 Atomicity: All changes to the system state
caused by a task happen, or none do.
Consistency: A task takes the database
from a consistent state to a consistent
state.
Isolation: The intermediate results of a
task are not visible to another task.
Durability: The changes committed by a
task are persistent.

These properties simplify transaction
management considerably, but they are too
restrictive in loosely coupled heterogeneous

OCTOBER 1994 0885-9000/94/$4.00 0 1994 IEEE 19

An earlier version of this article appeared as “Automating Workflows for Service Provisioning: Integrating AI and Database Technologies” on pp. 405-41 1 of the
Proceedings of the 10th Conference on Artificial Intelligencefor Applicanons (CAIA ’94). published in 1994 by the IEEE Computer Society Press, Los Alamitos, Calif.

~~~~~ 

-1p 

Authorized licensed use limited to: University of South Carolina. Downloaded on January 07,2025 at 01:05:34 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1. Abbreviated semontic model of h e  order processing environment. 

environments. For example, ACID tasks can 
be coordinated through mutual commit pro- 
tocols (which ensure that all of a given set of 
tasks commit, or none do), but such proto- 
cols are notoriously inefficient when exe- 
cuted over networks. Further, executing such 
a protocol requires access to the internal 
states of transactions, such as their precom- 
mit states (a transaction is in its precommit 
state when it is intemally ready to commit, 
but is awaiting permission from the transac- 
tion manager to do so). Most commercial 
database systems do not provide access to 
such intemal states, thereby making direct 
implementations of commit protocols ex- 
tremely difficult. 

The ACID properties are naturally realized 
when the correctness of database transactions 
is characterized through some purely syn- 
tactic or structural criterion, such as serializ- 
ability.* However, serializability cannot be 
efficiently implemented in distributed sys- 
tems whose component systems are au- 
tonomous. Instead of trying to specify cor- 
rectness criteria purely syntactically, we 
characterize them semantically: which al- 
lows us to specialize the correctness criteria 
to the application at the cost of building a 
deeper model of the application domain. This 
helps simplify several coordination require- 
ments. For example, instead of executing 
mutual commit protocols, we can optimisti- 
cally commit different tasks. If this action 
should prove erroneous, we undo the effects 
of incorrectly committed tasks by means of 
compensating transactions, whose definition 
depends on the semantics of the underlying 
domain. 

Consequently, in heterogeneous environ- 
ments, the unit of relevant activity is not a 
single database transaction, but rather a 

workfow that executes over a set of database 
and information resources. The constituent 
tasks of a workflow may be individually 
ACID, but the overall workflow usually is 
not. The problem is to ensure that no seman- 
tic constraint of the information model is vi- 
olated despite this. 

The activities that comprise a workflow of 
interest are typically already being carried 
out in the given organization. However, they 
are usually carried out by hand, with people 
intervening in several crucial stages to en- 
sure that the necessary tasks are done and that 
organizationwide consistency constraints are 
enforced. The semantics is supplied by the 
people or is implicitly encoded in the busi- 
ness procedures. The canonical example of 
a workflow is a document flow through an 
organization. For instance, when an order is 
received, it must be entered into the system, 
and several decisions must be made to 
process it properly. These decisions would 
typically require information from several 
resources within an enterprise and possibly 
some outside of it. For example, to process a 
request to transfer money from one account 
to another, the authorization must be veri- 
fied, the account numbers validated, and the 
source account tested to see if it has the re- 
quired balance. External sources would be 
accessed for other requests, such as loan ap- 
plications, where a credit bureau’s databases 
may beconsulted to determine an applicant’s 
credit worthiness. 

It is impomt  to be able to handle the myr- 
iad error conditions that may arise in differ- 
ent workflows. The exception conditions are 
the hardest to automate. It is in identifying 
and resolving such conditions, and manag- 
ing control and dataflow appropriately, that 
AI technology can contribute substantially. 

Workflows for service order 
processing 

The Carnot Project includes application 
partnerships with its sponsoring organiza- 
tions - an arrangement that lets us test our 
research ideas in prototype systems that ad- 
dress real problems. One of these partners 
provides telecommunication services, and 
one of the company’s services is to provide 
digital communication services between two 
specified points. 

In the extant workflow, the company re- 
ceives a set of paper forms that gives details 
about the service being ordered. It enters 
these forms into the system, and tests to de- 
termine if certain essential telecommunica- 
tion equipment is already in place. If it is, the 
service can be provided quickly; otherwise, 
the processing must be delayed until the 
equipment is installed. 

Providing the digital communication ser- 
vice using this workflow takes more than two 
weeks and involves 48 separate operations - 
23 of which are manual - against 16 different 
database systems. In addition, configuring the 
operation-support systems so that they can per- 
form such a task often takes several months. 
This is significant in our partner’s business en- 
vironment: Many of its competitors were 
formed in the last decade or so, and they typi- 
cally have more modem computational facil- 
ities than our client’s legacy systems. 

To aid our partner, we sought to reduce this 
time to less than two hours and to provide a 
way in which new services could be intro- 
duced more easily. Our goals were to develop 
a prototype workflow management system 
that could apply to workflows in general, and 
that would let the company operate as effi- 
ciently as its competition without discarding 
its legacy systems. Our strategy for accom- 
plishing these goals was to interconnect and 
interoperate among the previously indepen- 
dent systems, replace serial operations with 
parallel ones by using relaxed transaction pro- 
cessing: and automate previously manual op- 
erations, thereby reducing errors and delays. 

The entity-relationship diagram in Figure 
1 shows the most relevant components of the 
problem’s semantic model, while Figure 2 
presents the basic structure of the workflow 
(the admissible executions when everything 
works correctly). Each node is a task, and the 
partial order reflects the dependencies among 
tasks. Tasks cannot be initiated until all their 
dependencies are met; ordinarily, they must 
be initiated if those dependencies are satisfied. 

20 IEEE EXPERT 

--I 

Authorized licensed use limited to: University of South Carolina. Downloaded on January 07,2025 at 01:05:34 UTC from IEEE Xplore.  Restrictions apply. 



The Carnot solution 

We defined a distributed agent architec- 
ture, shown in Figure 3, for intelligent work- 
flow management that functions on top of 
Carnot’s distributed execution environment. 
Our design was required to use existing pro- 
cedures as much as possible so that it would 
not adversely affect other applications. As it 
turned out, our architecture accommodated 
this easily; indeed, we welcomed not having 
to worry about the details of the mainframe 
systems on which we ran various tasks. Since 
we assumed that the actual applications ex- 
ecuted by the workflow were already de- 
fined, our goal was to manage the overall 
structure of the applications in as domain-in- 
dependent a manner as possible. 
Our system consists of four agents that in- 

teract to produce the desired behavior. The 
databases in Figure 3 are assumed to include 
the relevant data and the application pro- 
grams that execute on them. The necessary 
applications are executed by the schedule 
processing agent; the user interface agent 
queries the systems to help users fill in order 
forms completely and correctly, and to pro- 
vide feedback about progress. This enables 
the detection of data inconsistencies early in 
the process. 

This architecture is made possible by our 
previous integration into Camot of an expert 
system shell with forward- and backward- 
chaining capabilities, a type system, and truth 
maintenance. This environment provides the 
basic message-passing facility that our agents 
use to interact with other agents anywhere 
on the network. We used this facility to im- 
plement a scheme by which agents can ex- 
change assertions, thereby triggering or dis- 
abling rules in each other. We augmented our 
scheme so that agents that are not expert sys- 
tems can also participate, provided they sat- 
isfy a simple protocol. This allowed us to in- 
tegrate transparently a graphical interaction 
agent, which is not an expert system shell. 

Figure 4 describes the implementation of 
the transaction-scheduling agent at a high 
level as an entity-relationship diagram. The 
tasks that correspond to the nodes of Figure 
2 are modeled as database transactions, each 
of which is initiated by an agent. Each task 
has an associated message type that essen- 
tially encodes the computation that the un- 
derlying IMS databases must execute. When 
an agent executes a task, it does so by pass- 
ing along the relevant message, that is, the 
name of the file that contains it. 

Figure 2. The order pratesing workflow automated. Only the default workflow is shown, without any exception paths. 

Figure 3. Our distributed AI system f i  workflow management. 

Figure 4. The transaction-scheduling agent’s implementation. 

OCTOBER 1994 21 

Authorized licensed use limited to: University of South Carolina. Downloaded on January 07,2025 at 01:05:34 UTC from IEEE Xplore.  Restrictions apply. 



Figure 5. Conceptual model for the schedule-repoiring ogeni. 

The agents operate as follows. The graphi- 
cal-interaction agent helps the user fill in an 
order form, and checks inventories to give the 
user an estimate of when the order will be com- 
pleted. It also informs the user about the order’s 
progress. The transaction-scheduling agent 
constructs the initial schedule for the request. 
The relevant subtasks are scheduled with the 
maximum concurrency possible, while still 
satisfying all precedence constraints. 

The schedule-processing agent executes 
the schedule by invoking tasks as necessary. 
It maintains connections to the databases in- 
volved in telecommunication order process- 
ing, and implements transactions on them. 
The schedule-processing agent also ensures 
that different workflows do not interact spu- 

riously. This is akin to the problem of con- 
currency control in traditional database sys- 
tems - ensuring that different transactions 
that access the same data items do not access 
them in relative orders for which there are no 
equivalent serial executions. With a work- 
flow, we need to ensure that subtasks on each 
database can be serialized in semantically 
consistent orders. This may require delaying 
some subtasks, or aborting and retrymg them. 

If the schedule-processing agent encoun- 
ters an unexpected condition, such as a task 
failure, it notifies the transaction-scheduling 
agent, which asks the schedule-repairing agent 
for advice on how to fix the problem. The ad- 
vice can be information on how to restart a 
transaction, how to abort a transaction, how 

Truth maintenante systems 
A truth maintenance system (TMS) pro- 

vides a simple, built-in, generic way to 
manage dependencies, such as in a 
workflow schedule.‘ Justification-based 
TMSs assign a belief status of IN or OUT to 
each represented assertion. IN means 
believed and OUT means not believed. A 
justification for an assertion is a pair of lists 
of assertions: the IN-list and the OUT-list. 
A justification is valid if and only if all the 
assertions on its IN-list are IN and all the 
assertions on its OUT-list are OUT. An as- 
sertion must be labeled IN if it has at least 
one valid justification; otherwise, it must be 
labeled OUT. 

TMSs simplify workflow scheduling. For 
example, the billing subtask proceeds on the 
assumption that the global task will not 
abort. Further, the billing task is retried on 

failure, but only if the global task does not 
abort in the meantime. The failure of the 
local circuit assignment subtask causes the 
global task to abort, thus removing the justi- 
fication for proceeding with the billing and, 
if it already happened, adding the justifica- 
tion for proceeding with its compensation. 
Consequently, complicated but correct exe- 
cutions - such as when the billing subtask 
succeeds on the fifth attempt, the local cir- 
cuit subtask fails, and the billing is canceled 
-can be realized even though they would 
not be explicitly specified. 

Rofmwues 
1. M.N. Huhns and D.M. Bridgeland, “Mul- 

tiagent Truth Maintenance,” IEEE Trans. 
Sysrem, Man, and Cybemetics, Vol. 21, 
NO. 6 , h .  1 9 9 1 , ~ .  1437-1445. 

to compensate for a previously committed 
transaction, or how to clean up a failed trans- 
action. These actions are meant to restore se- 
mantic consistency across the system. For ex- 
ample, if the system cannot allocate a span to 
a given service request, it aborts the entire re- 
quest; the billing task, if already committed, is 
compensated. On the other hand, if the billing 
task fails but the span allocation succeeds, the 
service order is allowed to proceed and the 
billing task is retried later. This example high- 
lights the distinction between vital and nonvi- 
tal subtasks. The failure of a vital subtask 
propagates to the global task; nonvital tasks 
can simply be retried. A conceptual model for 
the knowledge of the schedule-repairing agent 
is shown in Figure 5. 

The initial schedule is constructed on the 
assumption that tasks will succeed as ex- 
pected. This leads to a small, easily exe- 
cutable, schedule. If error conditions arise, 
they are accommodated at runtime by repair- 
ing the initial schedule. Some of this is auto- 
matic, since the undesirable and unexecuted 
parts of the schedule are disabled by the trans- 
action-scheduling agent’s truth maintenance 
system when their preconditions fail to hold 
(see the sidebar on truth maintenance). 

The basic structure of this system is do- 
main-independent, although the details of the 
messages are clearly domain-dependent. Cer- 
tain parameters, such as the identifier of the 
service request, are known to the scheduler, 
but most of the data is passed through the file 
system. The files are uniquely named using 
the known identifier, thereby allowing dif- 
ferent requests to execute concurrently. The 
other two domain-dependent components of 
the system are the resource constraints, which 
guide the scheduling and repairing processes, 
and translation routines invoked by the sched- 
ule-processing agent to convert data formats 
from those produced by one application to 
those expected by the next; these routines 
were written using the tools Lex and Yacc. 

prototype implementation for installation in 
a restricted production environment (one 
switching center). If it is successful, our 
client will deploy it in all switching centers. 

Certain desired features will call for AI 
technology in the final implementation, in- 
cluding schedule repair and other semantic 
aspects of the domain. Because of business 
constraints, we do not expect to use our pre- 
sent Lisp-based system for these, although 

22 IEEE EXPERT 

Authorized licensed use limited to: University of South Carolina. Downloaded on January 07,2025 at 01:05:34 UTC from IEEE Xplore.  Restrictions apply. 



the ideas will be reimplemented in a C++ or 
Rosette-based constraint processor. Certain 
other features, notably those to do with 
schedule processing, do not really require AI 
approaches, even though AI approaches are 
useful for rapidly prototyping them. 

An alternative approach for scheduling 
tasks is to use operations research techniques, 
such as MRP 11. With this approach, how- 
ever, it is difficult to handle contingencies, 
such as a task failure. An operations research 
approach would require new constraints to 
be added that reflect the failure, and then the 
MRP I1 system would have to be rerun to 
generate a new schedule. The new schedule 
might be quite different from the original 
one, which might cause additional problems, 
especially if the original schedule were al- 
ready being executed. 

It is safe to conclude that AI technology 
helped us sort out various issues and easily 
build a working system that could be tested. 
Having an implementation helps us under- 
stand the needed components and the inter- 
faces among them, which aids in the design 
and testing of industrial-strength modules. 

References 
1. J. Gray and A. Reuter, Transaction Processing: 

Concepts and Techniques, Morgan Kaufmann, 
San Francisco, Calif., 1993. 
PA. Bernstein, V. Hadzilacos, and N. Goodman, 
Concurrency Control and Recovery in Database 
Systems, Addison Wesley, Reading, Mass., 1987. 

3. H. Garcia-Molina and K. Salem, ‘Sagas:’ P m .  
ACM SIG MOD Con$ Management of Data, 
ACM Press, NewYork, 1987. 
P.C. Attie et al., ‘‘Specifying and Enforcing In- 
tertask Dependencies,” Proc. 19th Int’l Con$ 
Very Large Databases, 1993. 

Munindar P. Singb is a 
member of the Technical 
Staff in the R&D Division 
at Microelectronics and 
Computer Technology Cor- 
poration, where he has been 
conducting research on dis- 
tributed AI, heterogeneous 
database systems, and re- 
laxed transaction process- 
ing. His monograph on 

characterizing computational agents, Multiagent Sys- 
tems: A Theoretical Framework for Intentions, 
Know-How, and Communications, was recently pub- 
lished by Springer Verlag. Singh received his PhD 
and MS in computer science in 1992 and 1988, re- 
spectively, from the University of Texas, Austin, and 

2. 

4. 

his BTech in computer science and engineering in 
1986 from the Indian Institute of Technology, Delhi. 

Michael N. Huhns is a se- 
nior member of the R&D 
Division at the Microelec- 
tronics and Computer Tech- 
nology Corporation, where 
he has been conducting re- 
search on the Aqo, Antares, 
Reasoning Architectures, 
and Camot projects. He was 
previously an associate pro- 
fessor of elemical and com- 

puter engineering at the University of South Carolina, 
where he also directed the Center for Machine Intel- 
ligence. His research interests are in distributed AI, 
machine leaming, enterprise modeling and integra- 
tion, and computer vision. 

Huhns is the author of more than 100 papers in ma- 
chine intelligence and information systems, and is an 
editor of the books DistributedArtificial Intelligence, 
Volumes I and II. He received his PhD and MS in elec- 
trical engineering in 1975 and 1971, respectively, from 
the University of Southem California, and his BS in 
electrical engineering in 1969 from the University of 
Michigan, Ann Arbor. He is a member of Sigma Xi, 
Tau Beta Pi, Eta Kappa Nu, ACM, IEEE, and AAAI. 

Readers can reach the authors at Microelectron- 
ics and Computer Technology Corp., R&D Divi- 
sion, 3500 West Balcones Center Drive, Austin, TX, 
78759-5398; Internet: msingh or huhns@mcc.com 

@ Access Our Network 
he IEEE Computer Society is t he  largest association of computer  professionals, serving a network T of approximately 100,OGO members. The Society is currently in  search of the  best  authors who 

a re  interested in  writing books  on the  following topics: 

x Software Reusabflity 
x Methods of Technology Transfer 
# The Effects of Process Improvement on Software Development Costs 

We provide a supportive development environment that includes pee r  review of manuscripts by 
o u r  skilled review team. I n  addition t o  a competitive royalty rate and timely production, all 

Society publications a r e  promoted  and distributed throughout t he  world. 

To find ou t  more  and t o  receive o u r  author  guidelines, please call (714) 821-8380 or con tac t  

Catherine Harris, Managing Editor (c.harris9computer.org) 
Matt Loeb, Assistant Publisher (m.loeb@computer.org) 

@ IEEE Computer Society 10662 Los Vaqueros Circle Los Alamitos, CA 90720 

Authorized licensed use limited to: University of South Carolina. Downloaded on January 07,2025 at 01:05:34 UTC from IEEE Xplore.  Restrictions apply. 

mailto:huhns@mcc.com

