
0018-9162/97/$10.00 © 1997 IEEE80 Computer

A Tool for Organizing Web Information

T he physical and logical differences among
information sources on the Internet complicate
information retrieval in several ways.

• Data provided by the sources is no longer just
simple text or tuples, but now includes objects
and multimedia.

• Data also has varied and often arcane semantics.
• Sources have different policies, procedures, and

conventions.
• Diverse platforms host the data.

Networks grow and evolve as new sources are incor-
porated or existing sources are revised, further com-
plicating the picture. There are two basic approaches
to working around these problems.

• Client-server. This approach has produced a
plethora of search and query tools based mostly
on keywords. Keywords are better for text than
for the structured data found in most data-
bases, but are completely unsuitable for sources
that do not adhere to a uniform semantics.

• Agents. This approach achieves interoperation
among sources, applications, and users as the
agents serve as mediators, translators, and
information brokers—the essence of a cooper-
ative information systems architecture. The
agents’ major task is to reconcile the varied
semantics of the mostly autonomous resources.

Ontology-based interoperation is especially good
at dealing with inconsistent semantics in either
approach. Ontologies can capture both the struc-
ture and semantics of information environments, so
an ontology-based search engine can handle both
simple keyword-based queries as well as complex
queries on structured data.

ONTOLOGIES AND INTEROPERATION
To define an ontology, you start by defining a set

of representational terms. Definitions associate the
names of entities in a universe of discourse (such as
classes, relations, functions, or other objects) with

formal axioms that constrain the interpretation and
well-formed use of these terms.1 Ontologies capture
these semantic relationships, whether they exist
among keywords or among the tables and fields in
a database.

The resulting ontology is a network structure that
provides users with an abstract view of a domain-
specific information space. Ontologies are well
suited for knowledge sharing in a distributed envi-
ronment, and researchers have implemented several
ontology-based information systems.2,3

Value-mapping advantages
Ontologies have an advantage over unstructured

text-based information spaces for mapping values
to different units or formats, since query results do
not typically contain information about the units
of returned values. For example, when a query
requests employee salaries, the results do not indi-
cate whether the salaries are in dollars or pounds
or both. In an information environment fraught
with varying data representations, such problems
abound.

Scalability advantages
Ontologies can grow and shrink as necessary

based on the context in which they are used. In a
different context, part of one ontology can be hid-
den or another made visible, generating a new view
of the same information space to suit a certain
audience.

JAVA ONTOLOGY EDITOR
Aside from their many advantages, ontologies

have a major disadvantage: They are difficult to con-
struct. We therefore developed the Java Ontology
Editor (JOE) to help users build and browse ontolo-
gies. It also enables query formulation at several lev-
els of abstraction, including a very abstract level
comfortable for novice users. We’ve used this tool
for a health care information system.4

A software tool written in Java, JOE provides a
graphical user interface for creating or editing
ontologies. It allows users to formulate queries by

Ontologies—models of concepts and their relationships—are a powerful
way to organize query formulation and semantic reconciliation in large,
distributed information environments. This case study involves a health
care information system.

Kuhanandha
Mahalingam
and
Michael N.
Huhns
University of
South
Carolina

Project Reports

Authorized licensed use limited to: University of South Carolina. Downloaded on January 07,2025 at 01:21:14 UTC from IEEE Xplore. Restrictions apply.

pointing and clicking on the information space it dis-
plays. We used Java for JOE because it provides
advantages in distribution, security, and portability.

Query formulation advantages
To get desired information in a large heterogeneous

environment, users must efficiently formulate accu-
rate queries. This is easy if users have experience with
a database query language such as SQL, or if a system
allowed natural-language queries such as “Get me the
phone numbers of all the Johnsons in the Columbia
area.” JOE provides a middle ground between nat-
ural language and formal query languages. A few
mouse clicks on the ontology displayed by our tool
formulates this query as

Person
phone-number = <?.request.?>
last-name = ‘Johnson’
lives-in

City
name = ‘Columbia’

This format is as readable as the English command
and can easily be translated to SQL. Our tool allows
users with SQL knowledge to refine these queries,
which users can also edit and reuse later. This type of
query formulation would be difficult without a graph-
ical representation of the ontologies.

Group editing
We implemented JOE as a Java applet. Because

applets can be downloaded anywhere and anytime,
more than one user can simultaneously view and edit
the same ontology. This group editing feature allows
people with different expertise to cooperate in creat-
ing one global ontology. At the same time, each user
can create unique versions for their individual use.
Alternatively, users can merge different individual
ontologies to create a large superontology.

Abstraction mechanisms
Graphical ontology editors typically do not work

well with large numbers of nodes or links due to the
limited viewing area of most computer monitors. In
addition, navigating among a large number of nodes
and links can be awkward. JOE has five abstraction
mechanisms to overcome such problems.

Selective viewing. JOE allows users to view an
ontology with complete details or with only selected
types of nodes. A user can view only entities, entities
and attributes, or entities and relations, greatly reduc-
ing the complexity of a large ontology.

Searching. In editor mode, JOE provides a win-
dow with an alphabetic listing of all available nodes
in the ontology. The user can locate a node by just
double clicking on its name in the list, and JOE will
scroll the viewing window to that node. This option
minimizes the tedium of searching through a large
graph.

Zooming. JOE can display an entire ontology inside
the current window by zooming out. Figure 1 shows
this feature for a large health care ontology.

Magnification. When the entire ontology is dis-
played, JOE can also magnify a small portion of the
ontology. This is necessary if the ontology is large
enough so that detailed information is not displayed
in the zoomed-out image of the ontology. JOE dis-
plays this magnified portion in a separate window, as
shown on the right of Figure 1. Clicking anywhere
inside the window sets the viewing mode to normal
and centers the window at that point in the ontology.

Hierarchical information. JOE can display the hierar-
chical information of a given ontology in a treelike struc-
ture (similar to the MS Windows file manager format).
As shown in Figure 2 on the next page, JOE will display
only expanded nodes. With this feature, users can selec-
tively view or work at a comfortable level of abstraction.

In addition to these abstraction mechanisms, JOE
also supports most basic editing functionality, such as
selecting, cutting, and moving.

June 1997 81

Figure 1. JOE displays entire ontology within the current window and a magnified view of the selected area on the right.

Authorized licensed use limited to: University of South Carolina. Downloaded on January 07,2025 at 01:21:14 UTC from IEEE Xplore. Restrictions apply.

82 Computer

TEST APPLICATION
Currently, JOE is being integrated with Info-

Sleuth—an agent-based information technology
architecture—and applied to a health care informa-
tion system. The health care industry provides many
opportunities to use tools like JOE. Although health
care institutions need to share information, they can-
not request information directly from each other
because there are no globally accepted semantics.

The idea behind our application is to simply repre-
sent the abstract view of the information fundamen-
tal to all health care industries with a global ontology.
Then users can make queries based on this ontology
in a standard manner. These queries would be further
refined through intermediate “translating agents”
within InfoSleuth before processing by individual
health care providers. All health care providers can
communicate freely with each other, while continu-
ing to maintain their individual information source
architectures. This is a feasible and economical solu-

tion; it would be expensive to reengineer each facility
to adhere to a new standard.

Figure 3 shows JOE’s editing mode. The graph dis-
plays part of the information space for a health care
facility. It shows the patient table, all of its columns, and
a few of its relations. Users can move to any node in the
information space by selecting from a list of objects,
attributes, and relations, shown in the left window.

When executing in query mode, JOE initially provides
an option to select a “root entity” (table) from all avail-
able entities in the currently displayed ontology. After
selecting the root entity, users can build a query by either

• clicking on attributes (shown as ovals), which dis-
plays a dialog box in which the user can set
attribute constraints; or

• clicking on relations (diamonds) or associations
(pentagons), which displays the entities related
by this relation. Users can also expand these enti-
ties in turn.

A separate window to the right of the main window
displays the current query. After completing the query,
users can run it by choosing the submit option in the
query menu. JOE displays results in a separate win-
dow. Our tool also provides an editor in which a user
can directly modify or enter a new SQL statement for
execution.

A lthough JOE’s initial focus was a medical
domain, there are no restrictions on its use in
any similar domain. JOE can represent ontolo-

gies graphically irrespective of the domain. Given

Vehicle

Land vehicle Air vehicleSea vehicle

TrucksCars

Vehicle
Land vehicle

Cars
−

Sea vehicle+
Air vehicle+

−
Trucks−

Figure 2. Vehicle ontology and its corresponding hierarchy tree.

Figure 3. JOE’s editing mode.

Authorized licensed use limited to: University of South Carolina. Downloaded on January 07,2025 at 01:21:14 UTC from IEEE Xplore. Restrictions apply.

such an ontology, JOE simplifies the process of query-
ing and returning results. In the future, JOE will allow
additional editing features, such as comparing, merg-
ing, and splitting different ontologies by using seman-
tic reconciliation and other measures. ❖

Acknowledgments
The Advanced Technology Program of the National

Institute of Standards and Technology (HIIT contract
number 70NANB5H1011) and the Healthcare Open
Systems and Trials consortium supported this work
under a cooperative agreement.

References
1. T. Gruber, “Translation Approach to Portable Ontology

Specifications,” Knowledge Acquisition, An Interna-
tional Journal of Knowledge Acquisition for Knowledge-
Based Systems, June 1993, pp. 199-220.

2. D. Lenat and R.V. Guha, Building Large Knowledge-
Based Systems: Representation and Inference in the Cyc
Project, Addison-Wesley, Reading, Mass., 1990.

3. J. Hammer et al., “Information Translation, Mediation,
and Mosaic-Based Browsing in the TSIMMIS System,”
Proc. ACM SIGMOD Int’l Conf. Management of Data,
ACM Press, New York, 1995, p. 483.

4. Healthcare Information Infrastructure Technology Pro-
gram, http://host.scra.org/hiit.html.

Kuhanandha Mahalingam is a PhD student in the
Electrical and Computer Engineering Department at
the University of South Carolina. His research inter-
ests include ontology-based distributed information
systems and software agent technology. Mahalingam
received BS and MSEE degrees from North Carolina
State University. He is a member of IEEE and the
National Society for Professional Engineers.

Michael N. Huhns is a professor of electrical and com-
puter engineering and director of the Center for Infor-
mation Technology at the University of South Carolina.
His research interests are multiagent systems and het-
erogeneous distributed databases. An associate editor
for IEEE Internet Computing and IEEE Expert and Intel-
ligent Systems, he has written more than 100 technical
papers. Huhns received a BSEE from the University of
Michigan, Ann Arbor, and an MS and PhD in electrical
engineering from the University of Southern California,
Los Angeles. He is a member of the IEEE, ACM, AAAI,
Sigma Xi, Tau Beta Pi, and Eta Kappa Nu.

Contact the authors at the Center for Information
Technology, Department of Electrical and Computer
Engineering, University of South Carolina, Colum-
bia, SC 29208; kuha@sc.edu.

June 1997 83

Java- and
CORBA-Based
Network
Management

Nokia developed the Distributed
Computing Platform prototype
to support distributed
telecommunications services.
In the process, engineers learned
several lessons about Java
and CORBA integration.

Mika Leppinen, Pekka Pulkkinen, and
Aapo Rautiainen
Nokia Research Center

I ntegrated, distributed management of heteroge-
neous networks and services is becoming crucial to
telecommunications. Such new management sys-

tems must often use off-the-shelf components and
leverage previous investments in legacy management
applications. Yet despite implementation difficulties,
distributing management applications provides scal-
ability as well as cost and performance benefits.

Much of the telecommunications industry uses a
network architecture based on CMIP (Common
Management Information Protocol)1 to manage
equipment networks and services. In yet another
arena—the Internet—the SNMP (Simple Network
Management Protocol)2 has gained widespread accep-
tance. Both of these management frameworks will
continue to coexist far into the future. Thus, to provide
distributed network management, the telecommuni-
cations industry must accommodate both.

NOKIA DCP PROTOTYPE
A standard telecommunications platform must pro-

vide many types of services. Such a platform should
support distributed-object computing, network man-
agement protocols, Java,3 and Web technologies.
Nokia has incorporated these features into the
Distributed Computing Platform prototype4,5 to cre-
ate, manage, and invoke distributed telecom services.

CORBA based
We based our system on the Common Object

Request Broker Architecture,6 which addresses these

0018-9162/97/$10.00 © 1997 IEEE

Project Reports

Authorized licensed use limited to: University of South Carolina. Downloaded on January 07,2025 at 01:21:14 UTC from IEEE Xplore. Restrictions apply.

