Spring 2023 Q-exam — CSCE 750 (Algorithms) — Solutions

1. (Solving a Recurrence) Let T(n) be any positive-valued function defined for all integers $n \ge 0$ by the following recurrence, which holds for all sufficiently large n:

$$T(n) = \begin{cases} 2T(n/2) + n & \text{if } n \text{ is even,} \\ T(n-1) + n & \text{if } n \text{ is odd.} \end{cases}$$

Find tight asymptotic bounds on T(n), that is, find a function f(n), as simple as possible, such that $T(n) = \Theta(f(n))$ as $n \to \infty$. Justify your answer using the substitution method. **Answer:** $T(n) = \Theta(n \lg n)$. Key fact: if n is odd, then n - 1 is even. So

$$T(n) = \begin{cases} 2T(n/2) + n & \text{if } n \text{ is even,} \\ 2T((n-1)/2) + 2n - 1 & \text{if } n \text{ is odd.} \end{cases}$$

In both cases, $T(n) = 2T(|n/2|) + \Theta(n)$, which matches the standard Mergesort recurrence.

- 2. (Longest Welded Rod) You are supplied with a sequence r_1, \ldots, r_n of n > 0 rods of various positive integer lengths (in inches, say). Your job is to weld (i.e., fused end-to-end) rods to form the longest possible single welded rod. There are two constraints, however:
 - (a) The order of the rods cannot be swapped. That is, if i < j and r_i and r_j both appear in the welded rod, then r_i must be somewhere to the left of r_j .
 - (b) It may or may not be possible to weld two given rods together.

Design an algorithm for doing this. Your algorithm takes as input: (1) an array L[1...n] of positive integers where L[i] is the length (in inches) of rod r_i ; (2) an array W[1...n, 1..., n] of Booleans, where W[i, j] = TRUE iff it is possible to weld r_i directly with r_j . Your algorithm should return the length of the longest possible welded rod. (You are not required to determine which rods make up the optimal rod.) **Explain** your algorithm well enough so that an intelligent reader (who has taken CSCE 750) with no specialized knowledge can implement it.

Your algorithm must run in time $O(n^2)$. As usual, you may assume that all arithmetic and comparison operations on integers take O(1) time each.

Answer:

$$\begin{split} & \text{LONGESTROD}(L,W) \\ & \text{Allocate an array } R[1 \dots n] \text{ of integers} \\ & // R[i] \text{ is to be the longest possible length of a welded rod ending with } r_i. \\ & \text{for } i := 1 \text{ to } n \text{ do} \\ & R[i] := L[i] \text{ // Just know about } r_i \text{ by itself, initially} \\ & \text{ // Now try to weld } r_i \text{ to a previous rod} \\ & \text{for each } j \text{ such that } 1 \leq j < i \text{ and } W[j,i] \text{ do} \\ & \text{ if } R[j] + L[i] > R[i] \text{ then} \\ & R[i] := R[j] + L[i] \text{ // Get a longer rod if } r_i \text{ is welded to } r_j \\ & \text{ // R-table complete. Now find the optimal length (the max value in R).} \end{split}$$

m := 0for i := 1 to n do if R[i] > m then m := R[i]return m

3. (Shortest Path) Dijkstra's algorithm (famously) may fail on a digraph that has negative edge weights. Let G := (V, E, w) be a weighted, directed graph with weight function $w : E \to \mathbb{R}$ that may have *at most one* edge with negative weight. Design an algorithm that takes G and two vertices $s, t \in V$ as input and returns the minimum weight of an $s \to t$ path. Describe your algorithm with enough precision so that an intelligent reader (who has taken CSCE 750) with no specialized knowledge can implement it.

Your algorithm must run in time $O((n+m) \lg m)$, where n = |V| and m = |E|. As usual, you may assume that G is represented by adjacency lists, and all arithmetic and comparison operations on weights take O(1) time each. You may also assume (as usual) that G has no negative-weight cycles. For full credit, **explain briefly** why your algorithm is correct. [Note: The Bellman-Ford algorithm computes shortest paths when weights can be negative, but you cannot simply invoke it because it takes too long to run.]

Answer: High-level description:

- (a) Look to see if G has a negative edge weight. (This takes time O(n+m) to search through the edges of G.)
- (b) If G has no negative-weight edge, then run Dijkstra's algorithm with source s and return t.d.
- (c) Otherwise, let $(u, v) \in E$ be such that w(u, v) < 0.
 - i. Remove (u, v) from E. Let G' be the resulting graph.
 - ii. Run Dijkstra's algorithm on G' with source s, and set $d_1 := t.d$ and $d_2 := u.d$.
 - iii. Run Dijkstra's algorithm on G' again, this time with source v, and set $d_3 := t.d$.
 - iv. Return $\min(d_1, d_2 + w(u, v) + d_3)$.

Explanation: Part (b) works because Dijkstra's algo works when there are no negative edge weights. Otherwise, let e = (u, v) be the only negative-weight edge. A shortest $s \to t$ path (if one exists) either uses e once or avoids it. If e is not used, then Dijkstra on G' gives the shortest $s \to t$ distance. Otherwise, the shortest path consists of a shortest $s \to u$ path, followed by e, followed by a shortest $v \to t$ path. We find which of these two possibilities gives the shorter distance and return it.

The algorithm runs Dijkstra's algorithm at most twice, plus O(n+m) extra work, so the total time is asymptotically the same as for Dijkstra, which is $O((n+m) \lg m)$ (without bothering to use a Fibonacci heap).