
Spring 2023 Q-exam — CSCE 750 (Algorithms) — Solutions

1. (Solving a Recurrence) Let T (n) be any positive-valued function defined for all integers
n ≥ 0 by the following recurrence, which holds for all sufficiently large n:

T (n) =

{
2T (n/2) + n if n is even,

T (n− 1) + n if n is odd.

Find tight asymptotic bounds on T (n), that is, find a function f(n), as simple as possible,
such that T (n) = Θ(f(n)) as n → ∞. Justify your answer using the substitution method.

Answer: T (n) = Θ(n lg n). Key fact: if n is odd, then n− 1 is even. So

T (n) =

{
2T (n/2) + n if n is even,

2T ((n− 1)/2) + 2n− 1 if n is odd.

In both cases, T (n) = 2T (⌊n/2⌋) + Θ(n), which matches the standard Mergesort recurrence.

2. (Longest Welded Rod) You are supplied with a sequence r1, . . . , rn of n > 0 rods of various
positive integer lengths (in inches, say). Your job is to weld (i.e., fused end-to-end) rods to
form the longest possible single welded rod. There are two constraints, however:

(a) The order of the rods cannot be swapped. That is, if i < j and ri and rj both appear
in the welded rod, then ri must be somewhere to the left of rj .

(b) It may or may not be possible to weld two given rods together.

Design an algorithm for doing this. Your algorithm takes as input: (1) an array L[1 . . . n] of
positive integers where L[i] is the length (in inches) of rod ri; (2) an array W [1 . . . n, 1 . . . , n]
of Booleans, where W [i, j] = TRUE iff it is possible to weld ri directly with rj . Your
algorithm should return the length of the longest possible welded rod. (You are not required
to determine which rods make up the optimal rod.) Explain your algorithm well enough
so that an intelligent reader (who has taken CSCE 750) with no specialized knowledge can
implement it.

Your algorithm must run in time O(n2). As usual, you may assume that all arithmetic and
comparison operations on integers take O(1) time each.

Answer:

LongestRod(L,W )
Allocate an array R[1 . . . n] of integers
// R[i] is to be the longest possible length of a welded rod ending with ri.
for i := 1 to n do

R[i] := L[i] // Just know about ri by itself, initially
// Now try to weld ri to a previous rod
foreach j such that 1 ≤ j < i and W [j, i] do

if R[j] + L[i] > R[i] then
R[i] := R[j] + L[i] // Get a longer rod if ri is welded to rj

// R-table complete. Now find the optimal length (the max value in R).



m := 0
for i := 1 to n do

if R[i] > m then
m := R[i]

return m

3. (Shortest Path) Dijkstra’s algorithm (famously) may fail on a digraph that has nega-
tive edge weights. Let G := (V,E,w) be a weighted, directed graph with weight function
w : E → R that may have at most one edge with negative weight. Design an algorithm that
takes G and two vertices s, t ∈ V as input and returns the minimum weight of an s → t path.
Describe your algorithm with enough precision so that an intelligent reader (who has taken
CSCE 750) with no specialized knowledge can implement it.

Your algorithm must run in time O((n + m) lgm), where n = |V | and m = |E|. As usual,
you may assume that G is represented by adjacency lists, and all arithmetic and comparison
operations on weights take O(1) time each. You may also assume (as usual) that G has no
negative-weight cycles. For full credit, explain briefly why your algorithm is correct. [Note:
The Bellman-Ford algorithm computes shortest paths when weights can be negative, but you
cannot simply invoke it because it takes too long to run.]

Answer: High-level description:

(a) Look to see if G has a negative edge weight. (This takes time O(n+m) to search through
the edges of G.)

(b) If G has no negative-weight edge, then run Dijkstra’s algorithm with source s and return
t.d.

(c) Otherwise, let (u, v) ∈ E be such that w(u, v) < 0.

i. Remove (u, v) from E. Let G′ be the resulting graph.

ii. Run Dijkstra’s algorithm on G′ with source s, and set d1 := t.d and d2 := u.d.

iii. Run Dijkstra’s algorithm on G′ again, this time with source v, and set d3 := t.d.

iv. Return min(d1, d2 + w(u, v) + d3).

Explanation: Part (b) works because Dijkstra’s algo works when there are no negative edge
weights. Otherwise, let e = (u, v) be the only negative-weight edge. A shortest s → t path
(if one exists) either uses e once or avoids it. If e is not used, then Dijkstra on G′ gives the
shortest s → t distance. Otherwise, the shortest path consists of a shortest s → u path,
followed by e, followed by a shortest v → t path. We find which of these two possibilities
gives the shorter distance and return it.

The algorithm runs Dijkstra’s algorithm at most twice, plus O(n+m) extra work, so the total
time is asymptotically the same as for Dijkstra, which is O((n+m) lgm) (without bothering
to use a Fibonacci heap).


