Fall 2021 CSE Qualifying Exam CSCE 551 Answer Key

1. Let Σ be any alphabet. For any languages $L_1, L_2 \subseteq \Sigma^*$, define $L_1 \diamondsuit L_2$ to be the set of all strings obtained by overlapping a string from L_1 followed by a string from L_2 . (The "overlap" could be the empty string.). Formally,

$$L_1 \diamondsuit L_2 := \{ xyz \mid x, y, z \in \Sigma^* \text{ and } xy \in L_1 \text{ and } yz \in L_2 \}.$$

Show that if L_1 and L_2 are regular, then $L_1 \diamondsuit L_2$ is regular. If your proof involves a correct construction, then you do not need to prove that it is correct.

Answer: (No one did this problem.)

2. Let Σ be some alphabet. Say that a language $L \subseteq \Sigma^*$ is *length-dependent* iff, for all strings $x, y \in \Sigma^*$, if $x \in L$ and |x| = |y|, then $y \in L$. Define the language LD_{TM} as follows:

 $LD_{TM} := \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is length-dependent} \}.$

- (a) Show that LD_{TM} is undecidable by giving a mapping reduction from A_{TM} to LD_{TM} (i.e., $A_{TM} \leq_m LD_{TM}$).
- (b) Show that LD_{TM} is not Turing-recognizable by giving a mapping reduction from $\overline{A_{\mathsf{TM}}}$ to LD_{TM} (i.e., $\overline{A_{\mathsf{TM}}} \leq_m LD_{\mathsf{TM}}$, or equivalently, $A_{\mathsf{TM}} \leq_m \overline{LD_{\mathsf{TM}}}$).

If you give a correct reduction, then you do not need to prove that it is correct. Getting either (a) or (b) correct is worth 70%. Getting both correct is worth 100%.

Answer: There are several ways to reduce A_{TM} (respectively, $\overline{A_{\mathsf{TM}}}$) to $\mathsf{LD}_{\mathsf{TM}}$. Both assume wlog that all Turing machines (TMs) use as their input alphabet a set Σ that contains at least two symbols, say, **a** and **b**. Also note the convention that $\langle \mathcal{O} \rangle$ denotes a string encoding the mathematical object(s) \mathcal{O} in some reasonable way.

(a) Let $f: \Sigma^* \to \Sigma^*$ be defined as follows:

f := "On input $\langle M, w \rangle$ where M is a TM and w a string:

- i. Let R :='On input x:
 - A. If $x = \mathbf{a}$ then accept.
 - B. Run M on input w (and do what M does).'
- ii. Output $\langle R \rangle$."

Justification (optional): f is clearly computable. Let $\langle R \rangle$ be $f(\langle M, w \rangle)$. If $\langle M, w \rangle \in A_{\mathsf{TM}}$, then M accepts w; so then R accepts all strings, i.e., $L(R) = \Sigma^*$, which is length-dependent, so $\langle R \rangle \in \mathrm{LD}_{\mathsf{TM}}$. Conversely, if $\langle M, w \rangle \notin A_{\mathsf{TM}}$, then M does not accept w; so then $L(R) = \{\mathbf{a}\}$, which is not length-dependent, meaning $\langle R \rangle \notin \mathrm{LD}_{\mathsf{TM}}$. Thus f m-reduces A_{TM} to $\mathrm{LD}_{\mathsf{TM}}$.

- (b) Let $g: \Sigma^* \to \Sigma^*$ be defined as follows:
 - g := "On input $\langle M, w \rangle$ where M is a TM and w a string:
 - i. Let S := 'On input x:
 - A. Run M on input w. // Note: If M loops on w, then S will loop on x.
 - B. If M rejects w, then reject.
 - C. If $x = \mathbf{a}$ then accept. // We get here iff M accepts w.
 - D. Else, reject.'
 - ii. Output $\langle S \rangle$."

Justification (optional): g is clearly computable. Let $\langle S \rangle$ be $g(\langle M, w \rangle)$. If $\langle M, w \rangle \in \overline{A_{\mathsf{TM}}}$, then M does not accept w; so then S accepts no strings, i.e., $L(S) = \emptyset$, which is lengthdependent, so $\langle S \rangle \in \mathrm{LD}_{\mathsf{TM}}$. Conversely, if $\langle M, w \rangle \notin \overline{A_{\mathsf{TM}}}$, then M does accept w; so then $L(S) = \{\mathbf{a}\}$, which is not length-dependent, meaning $\langle S \rangle \notin \mathrm{LD}_{\mathsf{TM}}$. Thus g m-reduces $\overline{A_{\mathsf{TM}}}$ to $\mathrm{LD}_{\mathsf{TM}}$.

3. Let G = (V, E) be a graph. An *almost-clique* in G is a set $C \subseteq V$ of vertices such that all pairs of distinct vertices in C are adjacent except for one pair. That is, an almost-clique is a clique except with exactly one edge missing.

Let ALMOST-CLIQUE be the following decision problem:

Instance: A graph G and an integer $K \ge 2$. Question: Does there exist an almost-clique in G with K or more vertices?

ALMOST-CLIQUE is clearly in NP. Show that ALMOST-CLIQUE is NP-complete by giving a polynomial reduction from CLIQUE to ALMOST-CLIQUE.

[If your reduction is correct, you do not need to show that it is correct.]

Answer: Our reduction f takes as input a tuple $\langle G, K \rangle$ where G is a graph and K a natural number, and constructs a graph G' by starting with G then adding two new vertices u and v and new edges connecting each of u and v with all the vertices of G (but no edge connecting u with v). The reduction f then outputs $\langle G', K + 2 \rangle$.

Justification (optional): f is clearly computable in polynomial time. For correctness, first assume $\langle G, K \rangle \in \text{CLIQUE}$. Then G has a clique $C \subseteq G.V$ of size K. But then $C \cup \{u, v\}$ is an almost-clique of size K + 2 in G'—the unique edge missing being (u, v). Conversely, suppose that G' has an almost-clique $A \subseteq G'.V = G.V \cup \{u, v\}$ of size $\geq K + 2$. Let $x, y \in A$ be unique such that $(x, y) \notin G'.E$. There are two cases: (1) if $\{x, y\} \cap \{u, v\} \neq \emptyset$, then $A \setminus \{x, y\}$ is a clique in G of size $\geq K$ (and a moment's reflection convinces one that $A \setminus \{x, y\}$ can only contain vertices in G); (2) otherwise, $A \setminus \{u, v, x\}$ is a clique in G of size $\geq K$ (and a moment's reflection convinces one that $A \setminus \{u, v, x\}$ must contain at least K vertices). Thus in either case, $\langle G, K \rangle \in \text{CLIQUE}$.

There are other correct solutions to this problem.