Fall 2024 CSE Qualifying Exam—Theory (551)

1. Let $\Sigma := \{a, b, c\}$. For any language string $w \in \Sigma^*$, define MTE(w) to be the set of all strings obtained from w by moving one of its symbols to the end of the string. (MTE stands for "Move To End"). So for example,

 $MTE(abcab) = \{bcaba, acabb, ababc, abcba, abcab\}$ $MTE(\varepsilon) = \emptyset$

(Note that MTE(w) always includes w because moving its last symbol to the end does not change the string.)

For any $L \subseteq \Sigma^*$, define

$$\operatorname{MTE}(L) := \bigcup_{w \in L} \operatorname{MTE}(w) .$$

So MTE(L) is the set of all strings obtained from strings in L by moving any symbol in the string to its end.

Show by construction that if L is regular, then MTE(L) is regular. If your construction works, you need not justify it. [Hint: given an *n*-state DFA for L, there is an NFA for MTE(L) with roughly $n + |\Sigma|n = 4n$ states.]

Answer: Let $D = \langle Q, \Sigma, \delta, s, F \rangle$ be an *n*-state DFA such that L = L(D). We build a (4n + 3)-state NFA N such that L(N) = MTE(L) as follows:

- N starts with the disjoint union of D with three new disjoint copies of D that are D_a, D_b, D_c , plus three new states $\{t_a, t_b, t_c\}$. For any state $q \in Q$, we let q_a, q_b, q_c denote the corresponding copies of q in D_a, D_b, D_c , respectively.
- The start state of N is s, the start state of the D copy.
- The set of accepting states of N is $\{t_a, t_b, t_c\}$. All states in D, D_a, D_b, D_c are made rejecting.
- For every transition $q \xrightarrow{x} r$ of D, where $x \in \Sigma$ and $q, r \in Q$, add the ε -transition $q \xrightarrow{\varepsilon} r_x$ to N. (This transition allows you to pretend you read a symbol x on the input without actually reading it, but you remember x in the state r_x .)
- For every state $q \in F$ and $x \in \Sigma$, add the transition $q_x \xrightarrow{x} t_x$. (This allows you to read the same symbol at the end that you skipped earlier.)

2. We assume all languages are over the binary alphabet $\{0,1\}$ for this problem.

Let f be a function that, for every enumerator E and natural number $n \ge 0$ as inputs, outputs the number of strings in L(E) of length n, i.e.,

$$f(\langle E, n \rangle) = |L(E) \cap \{0, 1\}^n|.$$

Show that no such f can be computable.

Answer: Fix an enumerator E for some enumerable but undecidable language, e.g., A_{TM} . Assuming f is computable, the following procedure decides L(E) (contradiction): D := "On input $w \in \{0, 1\}^*$:

- (a) Let n := |w|. (The length of w is n.)
- (b) Compute $s := f(\langle E, n \rangle)$. (Then $s = |L(E) \cap \{0, 1\}^n$ by assumption.)
- (c) Run E until it prints s many distinct strings of length n.
- (d) If w is one of the strings printed by E in the last step, then accept; else reject."

Explanation (optional): Step (c) eventually finishes, because every string in L(E) is eventually printed by E, and there are s many of these strings of length n. If w is one of these strings, then clearly $w \in L(E)$, so accepting is correct. If w is not one of these strings, then $w \notin L(E)$ (for otherwise L(E) has more than s many strings of length n), and so rejecting is correct.

3. The VC-OVERLAP problem is

Instance: A graph G and a natural number $k \leq |G.V|$. Question: Is there a vertex cover C of G of size $\leq k$ such that at least one edge of G has *both* its endpoints of C?

VC-OVERLAP is clearly in NP. Show that VC-OVERLAP is NP-hard by giving a polynomial reduction to VC-OVERLAP from some well-known NP-complete problem. If your reduction is correct, you need not justify it.

Answer: We reduce VC to VC-OVERLAP. Given a graph G and number k (i.e., an instance of VC), construct a graph G' that is obtained from G by adding three new vertices u, v, w and connecting them all by edges, forming a 3-clique. We then return $\langle G', k' \rangle$, where k' := k + 2.

Explanation (optional): This reduction is clearly polynomial-time. Given $\langle G, k \rangle$ we argue both directions of the if-and-only-if:

⇒: If G has a v.c. C of size $\leq k$, then $C' := C \cup \{u, v\}$ is a v.c. of G' of size k' = k+2, and the edge (u, v) has both endpoints in C'.

 $\Leftarrow: \text{ If } G' \text{ has a v.c. } C' \text{ of size } k+2 \text{ (that contains both endpoints of some edge), then} \\ \text{ let } C := C' \cap G.V. \text{ Then } C \text{ is clearly a v.c. of } G, \text{ and } C \text{ has size } \leq k, \text{ because } C' \\ \text{ must include at least } 2 \text{ elements of } \{u, v, w\} \text{ to cover the edges in that triangle.} \end{cases}$