
Fall 2024 CSE Qualifying Exam—Theory (551)

1. Let Σ := {a, b, c}. For any language string w ∈ Σ∗, define MTE(w) to be the set of all
strings obtained from w by moving one of its symbols to the end of the string. (MTE
stands for “Move To End”). So for example,

MTE(abcab) = {bcaba, acabb, ababc, abcba, abcab}
MTE(ε) = ∅

(Note that MTE(w) always includes w because moving its last symbol to the end does
not change the string.)

For any L ⊆ Σ∗, define

MTE(L) :=
⋃
w∈L

MTE(w) .

So MTE(L) is the set of all strings obtained from strings in L by moving any symbol
in the string to its end.

Show by construction that if L is regular, then MTE(L) is regular. If your construction
works, you need not justify it. [Hint: given an n-state DFA for L, there is an NFA for
MTE(L) with roughly n+ |Σ|n = 4n states.]

Answer: Let D = ⟨Q,Σ, δ, s, F ⟩ be an n-state DFA such that L = L(D). We build
a (4n+ 3)-state NFA N such that L(N) = MTE(L) as follows:

• N starts with the disjoint union of D with three new disjoint copies of D that are
Da, Db, Dc, plus three new states {ta, tb, tc}. For any state q ∈ Q, we let qa, qb, qc
denote the corresponding copies of q in Da, Db, Dc, respectively.

• The start state of N is s, the start state of the D copy.

• The set of accepting states of N is {ta, tb, tc}. All states in D,Da, Db, Dc are made
rejecting.

• For every transition q
x→ r of D, where x ∈ Σ and q, r ∈ Q, add the ε-transition

q
ε→ rx to N . (This transition allows you to pretend you read a symbol x on the

input without actually reading it, but you remember x in the state rx.)

• For every state q ∈ F and x ∈ Σ, add the transition qx
x→ tx. (This allows you to

read the same symbol at the end that you skipped earlier.)

1

2. We assume all languages are over the binary alphabet {0, 1} for this problem.

Let f be a function that, for every enumerator E and natural number n ≥ 0 as inputs,
outputs the number of strings in L(E) of length n, i.e.,

f(⟨E, n⟩) = |L(E) ∩ {0, 1}n| .

Show that no such f can be computable.

Answer: Fix an enumerator E for some enumerable but undecidable language, e.g.,
ATM. Assuming f is computable, the following procedure decides L(E) (contradiction):

D := “On input w ∈ {0, 1}∗:

(a) Let n := |w|. (The length of w is n.)

(b) Compute s := f(⟨E, n⟩). (Then s = |L(E) ∩ {0, 1}n| by assumption.)

(c) Run E until it prints s many distinct strings of length n.

(d) If w is one of the strings printed by E in the last step, then accept; else reject.”

Explanation (optional): Step (c) eventually finishes, because every string in L(E)
is eventually printed by E, and there are s many of these strings of length n. If w is
one of these strings, then clearly w ∈ L(E), so accepting is correct. If w is not one
of these strings, then w /∈ L(E) (for otherwise L(E) has more than s many strings of
length n), and so rejecting is correct.

3. The VC-OVERLAP problem is

Instance: A graph G and a natural number k ≤ |G.V |.
Question: Is there a vertex cover C of G of size ≤ k such that at least one
edge of G has both its endpoints of C?

VC-OVERLAP is clearly in NP. Show that VC-OVERLAP is NP-hard by giving a
polynomial reduction to VC-OVERLAP from some well-known NP-complete problem.
If your reduction is correct, you need not justify it.

Answer: We reduce VC to VC-OVERLAP. Given a graph G and number k (i.e., an
instance of VC), construct a graph G′ that is obtained from G by adding three new
vertices u, v, w and connecting them all by edges, forming a 3-clique. We then return
⟨G′, k′⟩, where k′ := k + 2.

Explanation (optional): This reduction is clearly polynomial-time. Given ⟨G, k⟩ we
argue both directions of the if-and-only-if:

⇒: If G has a v.c. C of size ≤ k, then C ′ := C ∪{u, v} is a v.c. of G′ of size k′ = k+2,
and the edge (u, v) has both endpoints in C ′.

2

⇐: If G′ has a v.c. C ′ of size k + 2 (that contains both endpoints of some edge), then
let C := C ′ ∩G.V . Then C is clearly a v.c. of G, and C has size ≤ k, because C ′

must include at least 2 elements of {u, v, w} to cover the edges in that triangle.

3

