
Fall 2022 Q-exam — CSCE 750 (Algorithms) — Solutions

1. (Solving a Recurrence)

Let T (n) be any positive-valued function defined for all integers n ≥ 1 by the following
recurrence:

T (n) = 2T (n2/3) + T (n− 1) + n2 .

Then T (n) = Θ(nk) for some real constant k > 0. Find k, and justify your choice using
the substitution method. You may assume that any implicit floors or ceilings are of no
consequence.

Answer: k = 3.

Justification by the substitution method:

For the upper bound, assume n is sufficently large and that T (m) ≤ cm3 for all m < n, where
c is a constant to be determined. Then

T (n) = 2T (n2/3) + T (n− 1) + n2

≤ 2c(n2/3)3 + c(n− 1)3 + n2

= 2cn2 + c(n3 − 3n2 + 3n− 1) + n2

= cn3 − c(n2 + 3n− 1) + n2

≤ cn3

provided −c(n2 + 3n− 1) + n2 ≤ 0, or equivalently,

c ≥ n2

n2 + 3n− 1
.

This is true for all sufficiently large n if c is chosen so that c > 1.

For the lower bound, assume n is sufficently large and that T (m) ≥ cm3 for all m < n, where
c > 0 is a constant to be determined. Then

T (n) = 2T (n2/3) + T (n− 1) + n2

≥ 2c(n2/3)3 + c(n− 1)3 + n2

= 2cn2 + c(n3 − 3n2 + 3n− 1) + n2

= cn3 − c(n2 + 3n− 1) + n2

≤ cn3

provided −c(n2 + 3n− 1) + n2 ≥ 0, or equivalently,

c ≥ n2

n2 + 3n− 1
.

This is true for all sufficiently large n if c is chosen so that c < 1.

An alternate shortcut for the lower bound is to immediately drop the first term on the right-
hand side of the recurrence. This still gives a tight asymptotic bound as long as c < 1/3.



2. (Maximal Noncontiguous Subsequence) You are given a sequence S := ⟨a1, . . . , an⟩ of
n > 0 integers, each of which could be positive, negative, or zero. Say that a subsequence of
S is good if it does not include any two consecutive elements of S. For example, if n = 6,
then ⟨a1, a3, a5⟩ and ⟨a2, a6⟩ are good, but ⟨a2, a4, a5⟩ and ⟨a1, a2, a6⟩ are not. Describe
an algorithm that on input S returns a good subsequence of S the sum of whose elements
is as large as possible. Your description should include enough detail that an intelligent
programmer can implement it. For full credit, your algorithm should run in worst-case time
O(n). (As usual, assume each integer arithmetic operation takes O(1) time.)

Explain why your algorithm works, in enough detail to convince an intelligent but skeptical
reader that it is correct.

Answer: For 0 ≤ i ≤ n, let Si be the length-i prefix ⟨a1, . . . , ai⟩ of S (and so S = Sn),
and let mi be the largest possible sum of a noncontiguous subsequence of Si (so our solution
subsequence has sum mn). It is clear, then, that

m0 = 0 (sum of the empty sequence)

m1 = max{0, a1}
mk = max{mk−1,mk−2 + ak} (for 2 ≤ k ≤ n).

We use dynamic programming to compute m1, . . . ,mn while keeping track of the index ri of
the rightmost element of an optimal subsequence for each Si.

On input A[1 . . . n] // A[k] holds ak
allocate integer arrays M [0 . . . n] and R[0 . . . n] // M [k] holds mk and R[k] holds rk
M [0] := 0
R[0] := 0
if S[1] > 0 then

M [1] := A[1]
R[1] := 1
ℓ := 1 // ℓ holds the length of the subsequence to be returned

else
M [1] := 0
R[1] := 0
ℓ := 0

end-if
for k := 2 to n do

if M [k − 1] < M [k − 2] +A[k] then
M [k] := M [k − 2] +A[k]
R[k] := k // ak is the rightmost element of an optimal subsequence of Sk.
ℓ := ℓ+ 1

else
M [k] := M [k − 1]
R[k] := R[k − 1]

end-if
end-for
allocate an array B[1 . . . ℓ]



k := R[n]
for i := ℓ downto 1 do

B[i] := A[k]
k := R[k − 1]

end-for
return B

I also believe a divide-and-conquer approach might work for this problem: divide the sequence
in half at the middle, recurse on the left half and the right half, then combine results. It
seems that to do this properly, each call to the procedure on a subarray returns four optimal
subsequences: one that uses both ends of the subarray; one that uses the left end but not the
right; one that uses the right end but not the left; and one that uses neither end. Combining
these sequences from the two recursive calls then hopefully takes O(1) time, so the time T (n)
satisfies the recurrence T (n) = 2T (n/2) + O(1), which implies T (n) = O(n) by the Master
Theorem. The combination step is tricky, though, since one does not have time to make
copies of subsequences. I’m not sure if O(1) time is possible for this—maybe organize the
optimal subsequence elements in some kind of tree structure? (One can certainly compute
the optimal sum in O(n) time with this approach.)

3. (Dynamic Minimum Spanning Tree) Let G := (V,E) be a connected graph with vertex
set V := {v1, v2, . . . , vn} and with edge weight function w : E → R. Let (V, T ) be a minimum
spanning tree (MST) of G with respect to w. For any edge e := {vi, vj} ∈ E and real number
δ, define an altered weight function w′ obtained by adding δ to w(e), that is, for any e′ ∈ E,

w′(e′) =

{
w(e′) + δ if e′ = e,

w(e′) if e′ ̸= e.

You may assume that all edge weights are pairwise distinct (with respect to both w and w′).

Given G, (V, T ), e, and δ as input,

(a) describe an algorithm that finds an MST of G with respect to w′, assuming e ∈ T and
δ > 0.

(b) describe an algorithm that finds an MST of G with respect to w′, assuming e /∈ T and
δ < 0.

You’ll get 80% credit for either one and 100% credit for both. High-level descriptions are
enough, provided they are precise enough for an intelligent programmer to implement them
without guesswork. You may assume that both G and (V, T ) are given in adjacency list
representation, and that (V, T ) really is an MST with respect to w (so you don’t need to
check this).

Both algorithms must run in time O(n+m), wherem := |E|, assuming real number operations
take O(1) time each. This means that simply recomputing a minimum spanning tree with
respect to w′ from scratch takes too much time and will earn zero credit. You need not justify
the correctness of your algorithm.



Answer: Let e := {u, v} for some u, v ∈ V with u ̸= v.

(a) For part (a):

i. Remove e from T . (This makes (V, T ) a forest with two connected components, i.e.,
a unique cut (S, V − S), where S contains the vertices in the component of u and
V − S contains the vertices in the component of v.)

ii. Find the cut (S, V −S) as above using Breadth-First Search from u to determine S.

iii. Find the w′-lightest edge e′ crossing the cut (S, V − S). (It is possible that e′ = e.)

iv. Add e′ to T . (T is now a minimum spanning tree with respect to w′. The proof of
this is nontrivial.)

(b) For part (b):

i. Using Breadth-First Search, find the unique path in T connecting u with v. (This
path together with e forms a cycle C.)

ii. Find the heaviest edge e′ in C (heaviest with respect to w′).

iii. If e′ = e, then there is nothing to be done. (T is already a minimum spanning tree
with respect to w′.)

iv. Otherwise, replace e′ in T with e, that is, T := (T−{e′})∪{e}. (T is now a minimum
spanning tree with respect to w′. Again, the proof of this is nontrivial.)

Some remarks:

• The correctness of each algorithm can be shown, e.g., by comparing the behaviors of
Kruskal’s algorithm running with w versus w′ and noting when discrepancies occur.

• The run times of each can be kept to O(n+m) with a little care taken with the internal
data structures.

• For part (a), one could instead look at the whole cycle formed by adding edge e′ to T
and then replace e (which is in this cycle) with the lightest edge along the cycle. This is
acceptable as it does not increase the asymptotic run time, but it is unnecessary because
the lightest edge on the cycle is provably e′.


