IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO.6, NOVEMBER/DECEMBER 2000 1

Secure Databases:
Constraints, Inference Channels,
and Monitoring Disclosures

Alexander Brodsky, Csilla Farkas, and Sushil Jajodia, Senior Member, IEEE

Abstract—This paper investigates the problem of inference channels that occur when database constraints are combined with

nonsensitive data to obtain sensitive information. We present an integrated security mechanism, called the Disclosure Monitor, which
guarantees data confidentiality by extending the standard mandatory access control mechanism with a Disclosure Inference Engine.
The Disclosure Inference Engine generates all the information that can be disclosed to a user based on the user’s past and present
queries and the database and metadata constraints. The Disclosure Inference Engine operates in two modes: data-dependent mode,
when disclosure is established based on the actual data items, and data-independent mode, when only queries are utilized to generate
the disclosed information. The disclosure inference algorithms for both modes are characterized by the properties of soundness (i.e.,
everything that is generated by the algorithm is disclosed) and completeness (i.e., everything that can be disclosed is produced by the
algorithm). The technical core of this paper concentrates on the development of sound and complete algorithms for both data-

dependent and data-independent disclosures.

Index Terms—Multilevel security, data confidentiality, inference problem, constraints, data-dependent disclosure, data-independent
disclosure, inference algorithms, soundness, completeness, decidability.

1 INTRODUCTION

INFORMATION security policies in databases aim to protect
the confidentiality (secrecy) and the integrity of data while
ensuring data availability. In Multilevel Secure (MLS)
Relational Database Management Systems (RDBMSs),
direct violations of data confidentiality are prevented by
mandatory access control (MAC) mechanisms, such as
those based on the Bell-LaPadula (BLP) model. Mandatory
policies are expressed via security classification labels,
assigned to subjects, i.e., active computer system entities that
can initiate requests for information, and to objects, i.e.,
passive computer system repositories that are used to store
information. Classification labels, e.g., unclassified, confi-
dential, secret, top-secret, form a mathematical lattice
structure with a dominance relation among the labels.
MAC policies control read and write operations on the data
objects based on the classification labels of the requested
data objects and the classification label (also called
clearance) of the subject requesting the operation. For
example, BLP policy ensures that a subject can read an
object only if the subject’s classification label dominates the
object’s classification label (simple-security property) and
that a subject can write an object only if the object’s
classification label dominates the subject’s classification
label (star-property). However, MAC policies do not
completely guarantee information secrecy. Illegal data

o The authors are with the Center for Secure Information Systems and the
Department of Information and Software Engineering, George Mason
University, Fairfax, VA 22030.

E-mail: {brodsky, cfarkas, jajodiaj@gmu.edu.

Manuscript received 22 May 1998; accepted 29 June 1999.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 106784.

accesses via inference channels may occur even if a properly
functioning mandatory access control mechanism is pre-
sent.! The detection and removal of inference channels are
vital steps in providing secure database systems.

Database integrity constraints, such as functional,
multivalued, and join dependencies, are especially im-
portant from the perspective of generating inference
channels. Moreover, metadata that can be expressed by
general Horn-clause constraints can also generate infer-
ence channels. The following example, which is similar to
the one presented by Su and Ozsoyoglu [16], illustrates an
inference channel via functional dependency. Let (NAME,
RANK, SALARY, EXPERIENCE) be a relation schema, and
assume that the relation Employee over this schema
satisfies the functional dependency RANK — SALARY.
The security requirement is that only users with top-secret
security clearances can access information about salaries
of employees, i.e., users with secret or lower security
clearances cannot access tuples with values for attributes
NAME and SALARY. This classification scheme allows
users with secret or lower security clearances to separately
access these attributes, thus supporting data availability.
However, while security violations via direct data access
are prevented, the database still can be compromised by
indirect data access. To see this, assume that a user u with
secret security clearance requests the following two
queries: “List the RANK and SALARY of all employees”
and “List the NAME and RANK of all employees.” None
of the queries violates the security requirement because
they do not contain the top-secret < NAME,SALARY >
pair. But clearly, because the relation Employee satisfies the

1. Covert channels are outside the scope of this paper.

1041-4347/00/$10.00 © 2000 IEEE

User’s query

¢

Granted query D
(rcsul?) . M
Disclosure 1
S ()]
Mandatory Inference ¢ n
. 1 i
Access ~—_____— Engine o 1
dditional disclosed|
information T S o
Control u r
Database constr. r
Previous queries
(results) 4 €
Permission/Refusal

of answer

Fig. 1. Disclosure Monitor.

functional dependency RANK — SALARY and the user
knows the < RANK,SALARY > pairs, the user can infer
the salary of the employees.

1.1 Contributions

In this paper, we present an integrated security mechanism,
called the Disclosure Monitor(DiMon) (see Fig. 1), which
guarantees data confidentiality by extending a mandatory
access control mechanism (MAC) with the Disclosure
Inference Engine (DilE). After a user’s query is received,
MAC enforces the standard security policy by allowing the
user to read only the data that is dominated by the user’s
security clearance. If a security violation is detected, i.e., the
requested data has higher security classification than the
user’s, the query is rejected. If direct security violation is not
detected, the query is submitted to DilE for further
evaluation. DilE generates all the information that can be
disclosed by the user, based on the user’s past and current
requests and the database constraints. Then, the disclosed
information is returned to MAC to be reevaluated. If no
security violation is detected at this point, the query is
answered and the user’s history-file is updated.

The technical core of the paper introduces and studies
the fundamental notions of data-dependent and data-indepen-
dent disclosures. While motivated by our DiMon architec-
ture, the developed notions of disclosure and their
inferences are orthogonal to specific security architectures
and, in fact, are applicable to a wide variety of (both design
and query-time) security frameworks. We develop a
Disclosure Inference Engine that operates in two modes.
In data-dependent mode, the actual answers P, ..., P, to the
user’s past and present queries @i,...,Q, and the con-
straints D are considered to generate the disclosed facts. In
data-independent mode, only the past and present queries
Q1,...,Q, (without the actual data items) and the con-
straints D are used to generate new queries which are
disclosed.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2000

We say that a fact PF (over a query () is data-
dependently disclosed from query answers Pi,..., P, (to
queries @1, ...,Q, , respectively) by a set of constraints D if
PF' is guaranteed to be in any relation 7 such that 1)
satisfies D and 2) P,..., P, are the answers to the queries
Q1,...,Q, on r. While the data-dependent mode provides
the highest availability of data, it is computationally
expensive and requires large storage overhead for main-
taining a history-file. Disclosure can also be considered
based solely on (past and current) queries, but indepen-
dently of the (past or current) disclosed data. More
specifically, a query @ is data-independently disclosed
from queries Q1,...,Q, by a set of constraints D if there
exists an example of data-dependent disclosure correspond-
ing to queries @1, ...,Qy, @, and D. (Formal definitions and
properties of data-dependent and data-independent dis-
closure inferences are given in Sections 3, 4, and 5.) Data-
independent disclosure is computationally less expensive
and requires less storage overhead than the data-dependent
disclosure, but it may indicate disclosures which are not
present in a given database instance. However, without
knowing the actual data, data-independent disclosure is the
best one can achieve.

Our work is the first, to the best of our knowledge, that
introduces a formal classification of disclosure inference
algorithms by the properties of completeness and soundness.
The completeness property ensures that the algorithm
generates all of the disclosed information, thus no possible
inference remains undetected. The algorithm is sound if the
generated information (actual data in data-dependent mode
and queries in data-independent mode) is indeed disclosed.
Intuitively, soundness, along with completeness, provides
the highest data availability without violating security.
While it is desirable to develop algorithms that are both
sound and complete, completeness is clearly more crucial
than soundness from the perspective of data confidentiality.
Without formal properties of disclosure inference, such as
soundness and completeness, the strength of disclosure
inference algorithms, in terms of providing availability of
data and confidentiality, cannot be formally established.

We develop sound and complete disclosure inference
algorithms for both data-dependent and data-independent
modes. More specifically, we consider selection-projection
queries of the form Ilyoq, where C is a conjunction of
equalities among attributes and constants. Furthermore, we
consider a rich family of Horn-clause constraints, which are
the extensions of (full) generalized dependencies [19] with
constants.

For the data-dependent disclosure, we assume that
disclosed items (i.e., security-labeled objects) may include
specific (partial) tuples, attribute sets, equality-based selec-
tion conditions, or their combinations, and prove that the
problem of disclosure inference is decidable. Moreover, we
develop a disclosure inference algorithm (Algorithm 3) that
we prove is both sound and complete.

For the data-independent disclosure, we assume that
the disclosed items are selection-projection queries, in
which selection conditions are equalities, and prove that
the problem of disclosure inference is decidable for the
case when the selection conditions in queries and the

BRODSKY ET AL.: SECURE DATABASES: CONSTRAINTS, INFERENCE CHANNELS, AND MONITORING DISCLOSURES 3

constraints do not contain constants. Furthermore, for this
case, we provide a sound and complete disclosure
algorithm (Algorithm 4) that generates the set of data-
independently disclosed queries. Moreover, we develop a
general disclosure inference algorithm (Algorithm 5) that
works without the above restrictions and is guaranteed to
be complete.

1.2 Related Works and Their Limitations

Most of the inference channels in relational databases are
raised by combining metadata (e.g., database constraints)
with data in order to obtain information that has higher
security classification than the original data (see [8] for a
survey). Techniques to detect and remove inference
channels can be organized into two categories: The first
category includes techniques that detect inference channels
during database design; any channels are removed by
modifying the database design and/or by increasing the
classification levels of some of the data items [2], [6], [7],
[12], [17], [9], [13], [14], [16], [3], [4]. These techniques often
result in overclassification of data and, therefore, reduce the
availability of data. Techniques in the second category seek
to eliminate inference channel violations during query time
[5], [11], [15], [18]. If an inference channel is detected, the
query is either refused or modified to avoid security
violations.

Each of the categories above requires either data-
dependent or data-independent inference algorithms. How-
ever, none of the above works has the formal notion of
soundness and completeness for data-dependent and data-
independent disclosure and, thus, cannot establish these
formal properties of disclosure inference. Also, most
authors [2], [6], [13], [14], [11], [15], [18], with the exception
of [5], [7], [16], [3], [4], do not consider the problem of actual
inference for specific families of constraints (and its
decidability, soundness, completeness, etc.); rather, they
develop a framework, assuming that disclosure inference
algorithms are readily available. It is our view, however,
that the main technical difficulty of solving the inference
channel problem lies in developing (sound and complete)
inference algorithms, especially for the data-independent
case.

The work of Su and Ozsoyoglu [16] is the closest to ours
in that they consider inference algorithms for specific
constraint families, namely functional and multivalued
dependencies. However, their inference methods are
limited in several respects. First, as the source of illegal
inferences, they consider only two types of dependencies,
FDs and MVDs; inference algorithms are given for each of
the two types separately, but not when they are present
together, whereas our methods apply to Horn-clause
constraints, which are more expressive than the combina-
tion of FDs and MVDs. Second, they use single-attribute
security granularity for FD-compromise and tuple-level
security granularity for MVD-compromise. In contrast, we
propose a flexible security classification schema that can
also express content and context-based security granularity,
including selection-projection queries and arbitrary sets of
(partial) tuples. While their inference algorithms seem to be

sound and complete for single-attribute level security
granularity, it would not be sound even for security
granularity based on sets of attributes. Since their solution
for eliminating a detected inference channel is based on
increasing the classification level of individual attributes
(i.e., single-attribute level granularity), it restricts the
availability of data.

Finally, the scheme recommended by Su and Ozsoyoglu
is database design-time-oriented rather than query-time-
oriented, as in the case of DiMon. While design-time
approach is easier to manage and implement, query-time
approach allows more availability of data than design-time
approach because more information (i.e., past and current
data/queries) can be used for disclosure inference. Our
disclosure inference algorithms are readily available to both
design and query-time schemes (of our, only data-indepen-
dent disclosure is relevant to the design-time approach.)

1.3 Organization of Paper

The rest of the paper is organized as follows: Section 2
defines the subjects and the objects and how security
classification labels are assigned to them in our model and
contains the algorithm used by DiMon. Section 3 defines the
database constraints that form the basis of data disclosure,
and introduces the notions of data-dependent and data-
independent disclosures. The disclosure inference algo-
rithms for both modes are given in Sections 4 and 5. Finally,
Section 6 concludes and provides future research directions.
Due to space limitation, proofs of all propositions can be
found in [1].

2 DiscLOSURE MONITORING ARCHITECTURE
2.1 Data, Queries, and Security Classification

Our model is built upon lattice-based access control,
therefore, it is necessary to define what the objects and
the subjects are and how to assign security classification
labels to them. For simplicity, we assume that users and
subjects, executing on behalf of these users, are the same
entities, thus we use the terms user and subject inter-
changeably. To formally define objects, we need the
definition of projection facts, queries, and their combina-
tions, as given below.

We consider selection-projection queries of the form Ilyo¢,
where IIy denotes the projection of a relation on attributes
Y and o¢ denotes the selection condition of the query,
where C'is a conjunction of equalities of the forms A = B or
A = csuch that A, B are attribute names and c is a constant.
We assume the existence of a single, “universal” relation r
with schema R. The symbol R is used to indicate both the
relation name and the set of all its attributes.

In our model, it is possible to express complex security
requirements dealing not only with content and context-
based security restrictions, but different security granularity
also, as demonstrated in the following example.

Definition 2.1 (Projection fact). A projection fact (PF) of
type A, ..., A, where A;, ..., A; are attributes in R, is
a mapping m from {A4;,..., A} to Uf;:l dom(A;;) such
that m(AiJ) € dom(A;)), for all 1 < j < k. We will denote a

tj

projection fact by an expression of the form
R[A;, = a1,..., A = ai], where R is the relation name
and ay,...,a; are constants in dom(A;),...,dom(4;,),
respectively. A relation instance r' over R C R can be
viewed as a set of projection facts of type R'?

Note that, since a projection fact is a mapping, the order of

attributes A;,,...,4;, in R[4, =a,...,A;, =a is not

important.

Definiton 2.2 (Query-answer pair). An atomic query-
answer pair (QA-pair) is an expression of the form
(PF,Ilyoc), where PF is a projection fact over Y that
satisfies C. A query-answer pair is either an atomic QA-pair or
an expression of the form (P,Ilyoc), where P is a set of
projection facts { PF\, ..., PF;} such that every projection fact
PF;, (i=1,...,1) is over Y and satisfies C.

QA-pairs are used as security labeled objects. Specifi-
cally, an object in our security model can have one of the
following forms:

1. An atomic QA-pair (PF,Ilyoc).

2. A query of the form Ilyoc. This includes Iy
representing Ilyorpyr and o¢, representing Ilroc.

3. A set of atomic QA-pairs. As a security labeled
object, a QA-pair (P, Ilyo¢) will be interpreted as the
set {(PF,Ilyoc) | PF € P} and a set of QA-pairs

{(P17H3’10C1)a cees (PnﬂHYnO'Cn)}

will be interpreted as
{(PF,Ilyoc,) |1 <i<mn, PFe P}

We will also use the shortcut Iy oc(r) for (P,Ilyoc),
where P = Ilyoc(r), as well as Ily (r) for Ilyorrpe(r)
and o¢(r) for IIgoc(r). Furthermore, in data-depen-
dent mode, IIyoc will be interpreted as Ilyoc(r),
where r is the current database relation, i.e., all QA-
pairs of Ilyoc(r).

Definition 2.3 (Security classification). Let SL be a set of
security labels, e.g., unclassified, secret, top-secret, etc. A
security classification is a triple < O,U,\ >, where O =
{o1,...,0n} is a set of security objects, U is a set of subjects
(users), and \:OUU — SL is a security classification

mapping.

Since some of the security objects in O may be sets of atomic
QA-pairs, we denote by A(0'), for a subset O’ of O, the set
of all atomic objects that appear in O’ i.e,,

AO)={o | o€ O orthereisad € O suchthat o€ d'}.

To ensure data confidentiality, the access control mechan-
ism has to guarantee that the users cannot access objects
unless their security clearance is greater than or equal to the
security classification of the objects, i.e., A(user) > A(object).
Because O does not necessarily contain all of the objects that
may be requested by the user, we need to describe a

2. Often, the name partial tuples is used in literature.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2000

mechanism that detects whether the objects that are
currently requested or previously received by the user
disclose objects in O for which the user is not authorized.

2.2 Disclosure Monitor

Disclosure Monitor (DiMon), presented next, is an enhance-
ment of the standard mandatory access control mechanism
with a Disclosure Inference Engine to protect against
inference channels that result from database constraints
(see Fig. 1). Algorithm 1, given in Fig. 2, describes the steps
followed by DiMon. Note that the user’s id, given to the
algorithm as an input value, may refer to a particular user
or to a group of users sharing the same security clearance.
We illustrate the functionality of DiMon by the following
example.

Example 2.1. Again, consider the relation schema (NAME,
RANK, SALARY, EXPERIENCE) and the relation
Employee (see Table 1) that satisfies the functional
dependency RANK — SALARY. The security require-
ment is that only users with top-secret security
clearances can access the salaries of the employees,
ie, MIyamEesarary) = top-secret. In the data-depen-

dent mode, the relation Employee is used by DilE.
Assume that a user u with secret clearance has already
received the answer to the query

saLary ORANK=Clerik(Eployee),

which is < 34,000 > . When representing the informa-
tion revealed to the user, in both data-dependent and
data-independent mode, besides the actual data values
that were returned to the user, we also represent
information contained in the selection conditions of the
queries. For example, while the previous query only
returned the value for the SALARY, the user also knows
that this is the salary of the employee who is a clerk.
Therefore, the user’s history file in the data-dependent
mode contains the QA-pair

(R[RANK = Clerk, SALARY = 34,000],I1pank SALARY)
and, in the data-independent mode, the query
HRrANK,SALARY ORANK=Clerk-
Next, suppose that u requests the query
HNare raNKOEXPERIENCE=10(EMmployee).

According to our algorithm, DiMon first verifies if there
is a direct security violation. Because tuples over NAME
and RANK are classified as secret, there is no security
violation detected. Next, DiMon checks for possible
indirect security violations. First, a set O’ is constructed.

1. In the data-dependent mode

O = {(Inamesarary (Employee), Iy ane.sarary)}

thus the set of all atomic objects (QA-pairs) is

BRODSKY ET AL.: SECURE DATABASES: CONSTRAINTS, INFERENCE CHANNELS, AND MONITORING DISCLOSURES 5

Algorithm 1: Disclosurc Monitor
INPUT 1. User’s query (object) Q;
2. User’sid u
3. Security classification < O,U, A >
4. User’s history-file: objects which were previously retrieved by the user (QQA-pairs in
data-dependent mode and queries in data-independent mode)
5. D, a set of Horn-clause constraints
OuUTPUT Answer to @); and update of the user’s history-file or refusal of @;
METHOD MAC evaluates direct security violation:
if there is a classified object 0 € O such that A(u) Z A(o) then reject (); (note, direct
security violation is detected, DiMon functions as the basic MAC mechanism)
else (no direct security violation was detected)
begin

1. Find O' C O, the set of classified objects that cannot be returned to the user;

ie,O0'={oc O|Au) 2 Xo)}.

2. Using Disclosure Inference Engine (DilE), determine whether any of the
(atomic) objects in A(O') (i.e., disallowed objects) is disclosed from the user’s
history, the current query, and the constraints D.

3. if disclosure is detected in (2) (i.e., security is violated) then reject Q;
else (security is not violated) answer (0; and update the user’s history-file.

end

Fig. 2. Disclosure monitor.
A(O0") = {R[NAME = Brunnel, P.,

SALARY = 34,000], Iy anesazany),- - IInamE RANKOEXPERIENCE=10, and the FD. Intui-
RINAME = Smith, R., SALARY = 28,000}, tively, without knowing the actual data, there
ONAME,SALARY)- exists an example (of data) which constitutes a

disclosed from the queries IlsararyORANK=Clerks

Next, the answers to the current and previous data-dependent disclosure. For example, if the

queries and the FD are used to determine if any of employee W. Hammer was a clerk, then the

the atomic objects in A(O') are disclosed. Table 2 answers to the two queries would be as given in
summarizes the answers to the first (first tuple) Table 3. From these answers, by using the FD,
and to the second queries (second tuple). Note, users could infer that Hammer’s salary is $34, 000.

that the §;s represent unique null values, ie,

values that the user does not know. Using DilE, it

is determined that no atomic object in A(0') is 3 DATABASE CONSTRAINTS AND DATA
disclosed. Intuitively, this happens in the example DISCLOSURE

because the two answered tuples have different .)
values for attribute RANK, and, therefore they In our model, database constraints form the basis of data

cannot be combined by using the FD. disclosures. In this paper, we consider Horn-clause con-
2. In the data-independent mode, O' only contains the ~straints which are defined as follows.

query Hyanesacary, thus A(O') = O'. Next, the Definition 3.1 (Horn-clause constraint). A Horn-clause

user’s previously answered queries, the current constraint is an expression of the form

query, and the FD are submitted to DilE. Here, it

. . . . Vai,...,T, N oA D ,
is determined that the object IIyangsarary iS ! m (71 Pn = 1)

TABLE 1
The Employee Relation to lllustrate Possibler Inference Channel via the Functional Dependency RANK — SALARY
[NAME [RANK [SALARY ($) | EXPERIENCE (years) |
Brunnel, P. Clerk 34,000 5
Evan, S. Clerk 34,000 3
Hammer, W. | Director 65,000 10
Joels, R. Clerk 34,000 3
Smith, A. Accountant 41,000 6
Smith, R. Secretary 28,000 8

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2000

TABLE 2
Query Answers

TABLE 3
Example for Data-Independent Disclosure

[NAME | RANK | SALARY | EXPERIENCE (years) | ‘ NAME | RANK ‘ SALARY ‘ EXPERIENCE (years) |
(51 Clerk 34,000 (53 (51 Clerk 34,000 53
Hammer, W. | Director O 10 Hammer, W. | Clerk 04 10

where n > 1 and x,...,x,, are all of the free variables in
p1 A ... Ap, — q. Each p; is of the form

R[A;, =b1,..., A, = by,

where b; is either a variable or a constant and each q has one of
the following two forms:

l. RA =a,...,A, =a,], where Aq,..., A, are all of
the attributes of R (i.e., the constraint is full) and each
a; is either a constant or a variable that must appear in
pLA ... Apn In this case, the constraint is called
tuple-generating.

2. Equality of the form a; = a;, where each a; is either a
constant or a wvariable that must appear in
p1A...Npy. In this case, the constraint is called
equality-generating.

We will refer to py A ... A py as the body and to ¢
as the head of the constraint. We require that all the
variables of q appear in the body. We will use the
shorthand p, A ... Ap, — q for Horn-clause con-
straints. Horn-clause constraints extend generalized
dependencies [19] with constants and can express
functional, multivalued, and join dependencies, as well
as a wide variety of user defined knowledge.

Definition 3.2 (Truth value of the projection fact). We say
that a projection fact PF of type A;,,...A;, is TRUE with
respect to a set of projection facts P if P contains a projection
fact PF’ with the same predicate symbol and the same values
for attributes A; , . .., A;,. (PF' might contain other attributes
as well.)

Definition 3.3 (Constraint satisfaction). A database con-
straint d is satisfied by a set P of projection facts if its formula
is TRUE for P. (The truth value is defined in the standard
way.)

Since the relation r over R can be viewed as a set of
projection facts of type R, we can also speak of d being
satisfied by r. In the following, we restrict ourselves to
constraints which can be represented in Horn-clause forms
with equalities. We can now formally define the notion of
data-dependent disclosure.

Definition 3.4 (Data-dependent disclosure). Let D be a set of
database constraints, P, ..., P, be sets of projection facts over
attribute sets Xy, ..., X,, and PF be a projection fact over Y.
We say that the set of QA-pairs

P = {(PlaHX1001)7- E) (PW’HXHO-CH)}

discloses (PF,Ilyoc) in data-dependent mode, denoted as
P Ep (PF,Ilyoc) if, for every r over R that satisfies D,

P, Cllx,oc(r) for all i=1,...,n

implies PF € llyoc(r).

Given a set S of atomic QA-pairs, we say that P \=p S if for
every (atomic) QA-pair,

(PF,Mlyoc) € S,P p (PF,Ilyoc).
Finally, we denote by
(PF,Ilyoc) E (PF yoc)

the disclosure {(PF,Ilyoc)} Ep (PF',Ilyiocr), where D is
empty. In this case, we say that (PF,Ilyoc) data-depen-
dently dominates or simply dominates (PF',IIy:oc).

Note that, throughout the paper, we use |= to denote
both data-dependent disclosure when D is empty as well as
to denote logical entailment. The meaning of = will be clear
from its context. By the Definition 3.4, if D is inconsistent
(i.e., no relation satisfies it), then everything is disclosed.
The construction of data-dependent disclosure is computa-
tionally expensive and requires large storage overhead.
Therefore, we introduce the notion of data-independent
disclosure, where only the queries are considered to detect
whether an example of data-dependent disclosure can be
found that corresponds to the queries.

Definition 3.5 (Data-independent existential disclosure).
Let D be a set of database constraints and llx, oc,, ..., lx, oc,
queries over R. We say that the set of queries P =
{Ilx,0¢,,...,1Ix,00,} data-independently (or existen-
tially) discloses the query Ilyoc under D, denoted as
P~ Hyoc, if there exist

1. rover R that satisfies D,
2. sets P, CIlx,00,(r),..., P, Cllx, o¢,(r), and
3. PF e€Ilyoc(r), such that

{(PhHX]O-C])v"'7(PIL7HX,,,O-C,,)} ’:D (PF,HY(TC).

We say, that P~>_ P if, for every Ilyoc in P,
P ~>p IIyoc. Further, P ~>ap IIy will denote

P ~_, Ilyorrue,

and P ~>.p 0C will denote P ~>p IIroc, where R is the set of
all attributes of R. Also, we say that P ~_ (PF,Ilyoc) if
P~>_ Ilyoc, where C' is constructed as follows: If
PF = R[Ail = ayy.-- 7Aik = ak], where Ail,...,Aik = Y,
then C' is C conjuncted with all equalities of the form

Az;‘]:a], (]:1,,]@')

Finally, we denote by Ily.oc ~> IIyoc the case where
{ly o} ~>.n Ilyoc and D is empty. In this case, we say
that Iy oo existentially dominates Iy oc.

BRODSKY ET AL.: SECURE DATABASES: CONSTRAINTS, INFERENCE CHANNELS, AND MONITORING DISCLOSURES 7

To solve the problem of existential disclosure, we also
need the notation of universal disclosure, defined as
follows.

Definition 3.6 (Universal disclosure). Let D bea set of database
constraints and Ilx,o¢,, ..., Ilx,0c, queries over R. We say,
that the set of queries P = {ILy,0¢,, ..
discloses the query Iy oc under D, denotes as P ~2on Iyoc if,

.,IIx,0¢, } universally

for every PF over Ilyoc, there exist 1) r over R that satisfies D,
and 2) sets Py C Ilx,0¢,(7),..., P, C1lx, 0c,(r) such that

{(P17HX1UC1)7) (PnaHX”UCn)} ':D (PFv HyU()).

Similarly to the existential disclosure, we say that
P~ P’ if for every llyoc in P, P ~> Hyoc. Further,
P~>VD IIy will denote ’P~>VD Iyorrue, P~>VD o will
denote P~ Ilgoc, where R is the set of all attributes of
R, and P~ (PF,Ilyoc) if P~ yoe and C' is
constructed as follows: if PF = R[A;, = a1,...,A;, = ay,
where A;,,..., A, =Y, then C' is C conjuncted with all
equalities of the form A; =a;, (j=1,...,k). Finally, we
denote by Iy o ~>y IIyoc the case where

{Ilyoc} >, lyoc

and D is empty. In this case, we say that Ily-o¢ universally
dominates Ilyoc.

Note that, by Definitions 3.5 and 3.6, if D is inconsistent,
then nothing is disclosed. We study the interconnection
between the existential and the universal disclosure in
Section 5.

4 DATA-DEPENDENT DISCLOSURE

In this section, we develop an algorithm to construct a cover
of all disclosed query-answer pairs under database con-
straints D from the set P of query-answer pairs. First, we
state the decidability result for the data-dependent dis-
closure.

Theorem 4.1. The following problem is decidable: Given a set D
of database constraints and a set P of QA-pairs,

1. whether P Ep (PF,lyoc) for a given atomic
QA-pair (PF,|Ilyoc),

2. whether P [=p S for a given set S of atomic QA-pairs.

Theorem 4.1 will be a corollary to Theorem 4.2 that

states correctness (i.e., soundness and completeness) of

Algorithm 3 that computes a disclosure cover which is

defined in this section. To define disclosure cover, first

we need the following propositions.

Proposition 4.1. Let (PF,Ilyoc) and (PF' Ily.oc) be two
QA-pairs, and let C,, C’, be the selection conditions generated
from C and C', respectively, by extending them with the
equalities explicitly given in PF and PF’. Then,

l. (PF,Ilyoc) E (PF lyoo)<=C, C.
2. Data-dependent dominance is transitive, that is,

(PF, HYJC) ’: (PFI,HYIO'C/) A (PF/,HYIO'C/) 'Z
(PF//,HY//UC//) = (PF7 Hytfc) ': (PF//7HY/IO'C/I).

Note that data-dependent dominance can be extended to
QA-pairs that contain sets of projection facts. We say, that
(P,lIyoc) dominates (P',Ilyioc) if, for every PF' € P,
there exists a PF' € P such that (PF,Ilyo¢) E (PF, Iy o¢).

Clearly, there may be different QA-pairs @), and @) that
are equivalent in the sense that each dominates the other
(i.e., @1 Q2 and Qs = Q1). To provide a uniform repre-
sentation of equivalent QA-pairs, we define the notion of
normal forms of QA-pairs as follows:

Definition 4.1 (Normal form of a QA-pair). Given a QA-pair
(PF,Ilyo¢), its normal form, (PF' Iy o¢) is constructed
as follows:

Let C. be the selection condition constructed from C by
extending it with all the equalities explicitly given in PF.
Initially, PF' = PF,Y' =Y, and C' = C.

Step 1. For every attribute A; ¢ Y' such that C, F A; = ¢,
where c is a constant, do:

1. Extend PF' over A; by adding A; = c and

2. Add A;toY'.

Step 2. For every equality A; = B € C', where B is either a
constant or an attribute such that A; € Y’ remove A; = B
from C' (i.e., C' contains only equalities not given explicitly in
PF’).

Proposition 4.2. Data-dependent disclosure is transitive, that is,
for any sets P1, Ps, and Pz of QA-pairs Py Ep Pa A'Ps Ep
'Pg = 731 }:D 773

Definition 4.2 (Data-dependent disclosure cover of P
under D (DDCp(P))). Given a set of dependencies D and a
set of QA-pairs P = {(P,,Ux,0¢,),...,(P,,IIx,0¢,)} data-
dependent disclosure cover under D, denoted as
DDCp(P), is defined as a set S of QA-pairs (P, Ilyo¢) that is

1. sound, ie., forevery (P,Ilyoc) € Sand (P, Iy o),

(P, Hyac) }: (P/,Hny'C/) =P ':D (PI,HYIO'C/)

2. complete, i.e., for every (PF'.llyow), PEp
(PF',Ilyiocr) implies that there exists (P,Ilyo¢) in
S such that (P, Hydc) }: (PF/,Her'C/)

3. compact, for every (P,Ilyoc) € S,

a. It is in normal form,
b. Cis nonredundant, that is, no strict subset of C is
equivalent to C,
c. There does not exist (P',Uyoc) in S that is
different from (P,llyoc) and that dominates
(P, HyCT(,*).
Before we can describe the algorithm that is based on the

chase process [19], we need to first define the notions of
atom mapping and application of dependencies.

Definition 4.3 (Atom mapping of dependencies). Given a
Horn-clause constraint By, ..., B, — H and a relation r, we
define an atom mapping as a function h : {By,...,B,} —r
such that

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2000

Algorithm 2: Chase process

end

INPUT 1. Sct of Horn-clausc constraints D

2. Relation r, which may contain null-values
OUTPUT Updated relation r.
METHOD begin

Apply dependencies in D on r until no more changes to r occur.

Fig. 3. Chase process.

1. h preserves constants, i.e., if h(R[...,4A; =c¢c,...]) =
(c1y.--yCiyenoyey) €7 and c is a constant, then
Cc = ¢;.

2. h preserves equalities, i.e., if B, = R[..., A = a,...],
B;=R[...,Ai=a,..]and

h(B;) = (C1y.eyChyeneyCn),
h(B;)=(d,....q,...,c),
then ¢, = ¢,

Clearly, h can be extended to work from the set Sy of the
symbols (i.e., variables and constants) of the constraint to the
symbols of r. We will use the symbol h for this extended
mapping as well.

Definition 4.4 (Application of dependencies). A depen-
dency d is applied on a relation r by using an atom mapping
h as follows:

1. If d is an equality-generating dependency of the
form By, ..., B, — a=>b, then equate h(a) and h(b)
as follows:

a. If both h(a) and h(b) are null-values, then replace
all occurrences of one of them in r with the other.

b. If one of them, say h(a), is not a null-value, then
replace all occurrence of h(b) in r with h(a).

c. If both are not null-values (i.e., constants), do
nothing. If h(a) # h(b), we say that inconsis-
tency occurred.

2. If d is a tuple-generating dependency of the form
By,...,B, — R[A = a1,..., A, = a,] and the tuple
(h(a1),...,h(ay,)) is not in r, then add it to r.

Now that the application of the dependencies is defined, we
can describe the chase process, which is a variation of the
Chase defined in [19]. Algorithm 2, for the chase process, is
given in Fig. 3.

In order to preserve the information encapsulated in the
selection conditions of the queries, we generate dependen-
cies from them. These dependencies are then applied to the
answers of the corresponding queries. Let C be a conjunc-
tion of conditions of the forms A; = A; or A; = ¢, where 4;
and A; are attribute names and c is a constant. We generate
dependencies from each condition in C as follows: 1) For each
condition A; = A;, we create a dependency

R[AL = a;, A/ = aj} — a; = aj

and 2) for each condition A; = ¢, we create a dependency
R[A; = a;] — a; = c. Fig. 4 shows Algorithm 3 that generates
the data-dependent disclosure cover of a set P of query-
answer pairs under dependencies D.

Theorem 4.2 (data-dependent disclosure). Algorithm 3
effectively computes the data-dependent disclosure cover
DDCp(P), ie., the algorithm terminates and the computed
Sis

1. sound,
2. complete, and
3. compact.

Proof. First, Algorithm 3 must terminate since the applica-
tions of dependencies do not introduce new constants or
symbols and, therefore, there is only a finite number of
tuples that can be generated. We need to show that the
set S computed by the algorithm is

1. sound,
2. complete, and
3. compact.

Proof of soundness. Let S be the set produced by
Algorithm 3. Because data-dependent disclosure is
transitive (Proposition 4.2), to prove soundness of S, it is
sufficient to prove that every QA-pair (P,Ilyoc¢) in S is
disclosed, ie., P Ep (P,llyoc). This is based on the
following claim:

Claim 1. For every relation r that satisfies D, there exist symbol
mappings (preserving equalities and constants) from the tuples
of the relations r;, v}, and r”, which were generated by the
algorithm in Step 1a, 1c, and 2, respectively, to the tuples of r.

Before proving Claim 1, we complete the proof of
soundness. If inconsistency occurred in Step 2, then, by
Claim 1, there does not exist r that satisfies D such that
P, CIly,o0c¢/(r) for all i = 1,...,m. Therefore,

S = {(ALL, HRGTRUE)}

is vacuously disclosed. If no inconsistency occurred, then,
by using Claim 1, every (PF,Ilyoc) generated in Step 3
of the algorithm is indeed disclosed. Finally, Step 4 of
Algorithm 3 clearly leaves the set S sound. The only
remaining part is the proof of Claim 1, for which we will
use the following claim:

Claim 2. Let r; be a relation that possibly contains null values,
and vy be a regular relation such that vy and ry are over the
same schema and ry satisfies a set of dependencies DD. If there
exists a symbol mapping (preserving equalities and constants)
from 1y to ro, then there also exists a symbol mapping from
Chasepp(r1) to 19, where Chasepp(ry) is the relation
obtained by applying the dependencies DD on 1.

BRODSKY ET AL.: SECURE DATABASES: CONSTRAINTS, INFERENCE CHANNELS, AND MONITORING DISCLOSURES 9

Algorithm 3:

Data-Dependent Disclosure Cover

INPUT 1. Set P ={(P,,lIx,0¢.),-..,(Pm,x,,0c,)} of QA-pairs
2. Set of Horn-clause constraints D

OUTPUT Data-dependent disclosure cover DDCp(P) (The set S at the conclusion of the algo-
rithm.)

METHOD 1. for every (P;,Ilx,0¢,) in P do

(a) Augment each PF € P; with new unique null values for attributes in

R — X; to create r;

i=1"1

thing is disclosed)

(b) PF =TIy (t)

explicitly in PF.

C =’ do:

5. Return S as the output.

(b) Generate dependencies D; from C,;
(¢) Chase r; with D; to construct r}
2. Construct ' = |-, r} and chase r' with dependencies D to get r"

3. if during Step 1 or 2
{(ALL,lgorruE)} as output, where ALL is the domain of R (i.e., every-

inconsistency occurred,

else let S to be the set of all (PF,Ilyo¢) such that there exists ¢ € v and

(a) Y contains all attributes in which ¢ is not null

(c) C encodes only the equalitics among the attributes which do not appear

4. (a) Continue until no more changes occur:
if two different QA-pairs (PF,Uyo¢) and (PF', My 0¢:) arc in S, and
(PF,llyo¢) E (PF',Ily.0¢:) then remove (PF' Iy o¢) from S.

(b) Continue until no more changes occur:
if two different QA-pairs (P,1lyo¢) and (P',Ilyo¢r) are in S such that

i. Add (PU P/ Tlyo¢) to S, and
ii. Remove (P,Ilyo¢) and (P!, Tlyoer) from S.

(c) for each (P,IIyo¢) in S replace C by an equivalent minimal subset of C.

then return § =

Fig. 4. Data-dependent disclosure cover.

Before proving Claim 2, we complete the proof of
Claim 1. Clearly, there is a mapping from r; to Ilx,o¢,(7)
and Ix,oc¢,(r) satisfies D;. From this and Claim 2, it
results that there is a symbol mapping from 7, =
Chasep,(r;) to Ilx.oc(r) and therefore to r. But then,
there are symbol mappings p1,...,p, from every r; i =
1,...,m to r. Since two different relations »; and r;.
cannot share a common null value because of the way ;s
are constructed in Step 1a and the fact that Chasep, only
operates on single relations, the union of the symbol
mappings p1 U...Up, constitutes a symbol mapping
from ' = |J*, v; to r. But then, by Claim 2, there exist a

=

symbol mapping from 7 = Chasep(r’) to r.

The only remaining part is Claim 2, which we prove
by induction on the number of application of dependen-
cies on ;. We know that, originally, there is a symbol
mapping from 7 to 7, and that r, satisfies the
dependencies DD. Assume, that dependencies
di,....dy of DD were applied on r; and that, by
induction hypothesis, there exists a symbol mapping p*
from r’f = Chaseg, .., (r1) to 5. We want to show that,
after the application of the next dependency di4; on r]f,
there still exists a symbol mapping p"*! from r}! to r,.

Let tuples ¢,,...,t;, in r’f satisfy the body of d;1, i.e.,
there exists an atom mapping h from the body of dj.;; to
the tuples t;,,...,t;,, and let tuples ¢,,...,t, be their
corresponding tuples in r, i.e.,

pr(ty,) =ty foralli=1,...,1.
If diyq is a(n):

1. Equality-generating dependency of the form
By,...,B, = a=10, then h(a) and h(b) are the two
attribute values of rf which are equated, say all
occurrences of h(a) are replaced by h(b). We define
p"*1 as follows: If tuple ¢ in r¥*! was created from
tuple t' in 7%, then p**1(¢) = p*(#). (Note this includes
the case when t =t'.)

We claim, that p**! is indeed a symbol mapping,
i.e., it preserves equalities and constants. For this, let
pF(h(a)) = ¢; and p*(h(b)) = cy, where ¢; and ¢, are
constant values of ry. Since 7, satisfies dj,; and p*
preserves equalities and constants, ¢; must be equal
to ¢, and, therefore, p**! is a symbol mapping from
1 to ry.

2. Tuple-generating dependency of the form

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2000

Bl,...,BnHR[Al:al,...,An:CLn]

and a new tuple (h(a1),...,h(a,)) is added to r%. We

define p**! as follows:

ki

a. For the tuples in ¥, p**! coincides with p*.

b. For the new tuple,

P ((h(ar), .. h(an)))
= (" (h(a)),...,p"(A(an))) = t.

We claim, that ¢ is indeed in ry. This follows from the
fact, that ro satisfies di,; and that p* preserves equalities
and constants. This completes the proof of the soundness
of the algorithm.

Proof of completeness. If inconsistency occurred, then
completeness trivially follows since (ALL,IIporryr)
dominates every QA-pair.

If no inconsistency occurred, then let us suppose that a
QA-pair (PF,Ilyoc) is disclosed from

P = {(P17HX1001)7 RR) (RTMHXmJCm)}

by D. We construct a relation r from r” at the end of Step
2 by replacing each unique null value §; with a new
unique constant while preserving equalities. It is clear
that r satisfies D and

P, Clly,oc,(r) foralli=1,...,m.

But then, by the definition of data-dependent disclosure,
PF € llyoc(r), meaning that in Step 3, the algorithm
should have produced a QA-pair ¢ which dominates
(PF,Ilyoc). Since by construction of S in Step 4 of the
algorithm a created QA-pair ¢’ € S must dominate ¢, ¢
must therefore also dominate (PF,Ilyoc). This com-
pletes the proof of completeness.

Proof of compactness. It is given by contradiction. Assume
that & is not compact. Clearly, by construction of
(PF,Ilyoc) in Steps 3a, 3b, and 3¢, it is in normal form.
Also, by Step 4c, C is nonredundant. But then, there is a
QA-pair (P,Illyoc) € S for which there exists a
(P,Ilyio¢r) in S such that (P, Iyox) # (P,Iyoc) and
(]3/7 Hny'Cr) 'Z (P, Hyac).

By construction in Step 4b, P, P’ are nonempty and
therefore, there are PFF € P and PF' € P’ such that
PF =TIy (PF"). But then, we must have had QA-pairs
(PF',llyiocr) and (PF,Ilyoc,), where C; =C" and
C.=C after Step 4a of the algorithm such that
(PF',Tly:o¢r) E (PF,IIyoc,). This is a contradiction
since at least one of them should have been eliminated
in Step 4a. This completes the proof that the set S at
the end of the algorithm is compact. 0

The complexity of Algorithm 3 is dominated by the chase
process in Step 2. In it, an iteration (application of a
dependency) is bounded by O(I7), where I is the number of
symbols in ' and T is the total number of attributes of +’.
Each iteration, if done naively, may check O(I"T) of
potential atom mappings, where n is the number of
formulas in the body of the dependency, spending O(nT)

time for a check. Thus, the work in each iteration is
bounded by O(nT - I"T). Therefore, the overall time of chase
is bounded by O(nT - I"" - I") = O(nT - I"*V7). Since the
number of symbols in 7’ is bounded by ¢T, where ¢ is the
overall number of atomic QA-pairs in P, the complexity of
Algorithm 3 is bounded by O(nT - (¢T)" "), ie., poly-
nomial in the size of the input, if the number of attributes is
bounded by a constant, and exponential in the number of
attributes.

Example 4.1. This is a detailed illustration of generating the
data-dependent disclosure cover for the two queries
presented in Example 2.1. The input for Algorithm 3 is
the QA-pairs

P = {(R[RANK = Clerk, SALARY = 34,000],
HRANK.SALARY)
(RINAME = Hammer,W. . RANK = Director],

HNA;WE‘RANKUE‘XPER[E‘NCE‘:]O) }

and the Horn-clause constraint

R[RANK =r,SALARY = s
A RRANK =r,SALARY = s3] — $1 = $2

that represents the functional dependency
RANK — SALARY.

Table 2 shows the relation ' (Step 2 of Algorithm 3) that
is chased by the FD. Since there does not exist any atom
mapping from the FD to the tuples of 7/, the FD cannot be
applied (see Definition 4.4) and, therefore, ' is also the
output relation (r”) of chase process.

In Step 3, " is used to construct S that is data-
dependent disclosure cover of P under FD.

S = {(R[RANK = Clerk, SALARY = 34,000],
HRaNK.SALARY)
(RINAME = Hammer,W.,RANK
= Director, EXPERIENCE = 10],

HNA]MEA,RANKA,EXPERIENCE) } .

Since S does not disclose any top-secret object, the query
is answered to the user.

Example 4.2. Now, consider the previous example with the
difference that the employee Hammer, W is a clerk, that
is, the third tuple in the Employee relation is
< Hammer, W., Clerk, 34,000, 10 > . Then, the input for
Algorithm 3 is the QA-pairs

P = {(R[RANK = Clerk, SALARY = 34,000],
HraNK SALARY),
(RINAME = Hammer,W.,RANK = Clerk],
1IN AME RANKOEXPERIENCE=10) }-
In this case, there exists an atom mapping h from the
FD to the tuples generated from P (see Table 3), that
is, h(r)=Clerk, h(s;) =34,000, and h(ss) =64. The
result of the application of the functional dependency
with mapping h is that ¢, is replaced with 34,000.

BRODSKY ET AL.: SECURE DATABASES: CONSTRAINTS, INFERENCE CHANNELS, AND MONITORING DISCLOSURES 11

Since the FD cannot be applied again, the final output
of Algorithm 3 is

S ={(RI[NAME = Hammer,W.,RANK = Clerk,
SALARY = 34,000, EXPERIENCE = 10],

HNAM'E,RANK,SALARY,EXPERIENCE)} .

Since S discloses a top-secret object, the second query is
rejected.

5 DATA-INDEPENDENT DISCLOSURE

We start the section with the decidability result of data-
independent disclosure.

Theroem 5.1. If queries and constraints do not involve
constants, then the following problem is decidable: Given a
set of queries P = {llx,0¢,...,lx,0¢,}, a set of Horn-
clause constraints D, and a query Ilyoc determine whether
P ~>3D Ilyoc.

The proof of Theorem 5.1 is based on the correctness of the
algorithm that computes existential disclosure cover that we
present in this section. As in the data-dependent case, we
need the notion of normal forms.

Definition 5.1 (Normal form of Ilyo¢). Given a query Ilyoc,
its normal form is Iy.oc, where Y’ is the minimal set of
attributes that is closed under the following properties:

1. YCVY,
2. IfCEA=Ajand A; €Y, then A; €Y', and
3. IfCE A; =c, where c is a constant, then A; € Y'.

IfY' =Y, we say that lyoc is in normal form.

The following proposition establishes syntactic condi-
tions (that can be effectively tested) for universal and
existential dominance which are used in this section.

Proposition 5.1. Let Ilyo¢ and Iy o be two queries in normal
forms. Then,

1. Ilyoe ~>3 [y o<

a. Y CY,
C'" A C is consistent, and
c. CEC.,, where C', is the conjunction of
equalities A; = A; such that C' = A; = A; and
A[%YOTA]%Y.
2. Ilyoe ~>V Iy oo<=

a. Hyo'c ~>3 HerTC/ and
b. C'E(CAC")y, where (CAC")y is the con-
junction of equalities

i. A, =csuch that CANC' E A; = ¢, where ¢
is a constant and A; €Y', or
ii. A;=Ajsuchthat CNC' = A, = A;, where
A;and Ajarein'Y’.
Next, we establish the relationship between the notions
of universal and existential dominance.

Proposition 5.2. For every Ilyoc, P, and D:

1. If C is consistent, then

P ~>VD llyoc =P ~>3D Ilyoc.

2. IfP ~> IIy o, then there exists a consistent set C'
such that (C" |z C), P~ Ilyoc and

Hyo'c/ ~>3 Hyac.

The following two propositions deal with the transitivity of
universal and existential disclosures.

Proposition 5.3. Universal disclosure is transitive. Let Py, Pa,
and Ps be sets of queries:

~> o ~> < ~> .
P VD Pa A Py v P3 = Pi VD Ps.
In particular, universal dominance is transitive, i.e.,

Hy] oo, ~>V HYZUCQ A Hy20'(72 ~>V

H)@O’C3 = HYIUC] ~>v HYso'Gg-

Proposition 5.4. Existential disclosure (~_) is not transitive.

Similarly to the data-dependent case, we need the notion of
compact cover.

Definition 5.2 (Data-independent disclosure cover of P
under D). Given P = {Ilx,0¢,,...,Ix,0¢,} a set of queries,
the data-independent disclosure cover of P under D,
denoted as IDC5p(P), is a set S of queries Ilyoc that is

1. sound, ie., for every Ilyoc in S and query Iy ocr,
Iyoe ~>3 ly.oor =P ~>3D Iy ocr.

2. complete, i.e., for every query y.ocr, P ~>_ Ilyioc
implies that there exists Ilyoc in S such that
Hyo’c ~>3 HY/O'C/

3. compact, i.e., for every query Ilyoc € S

a. Cisnonredundant, that is, no strict subset of C'is
equivalent to C and

b. there does not exist Ily oc in S that is different
from Ilyoc and universally dominates Ilyoc.

Next, we present an algorithm that generates data-inde-
pendent disclosure cover when neither the selection
conditions of the queries nor the database dependencies
contain constants. The algorithm is shown in Fig. 5.

Theorem 5.2 (Constant-free Data-Independent Disclosure
Cover). Algorithm 4 effectively computes IDCsp(P), i.e., the
algorithm terminates and the computed S is

1. sound,
2. complete, and
3. compact.

Proof. Clearly, since the application of dependencies do not
generate new symbols, there is only a finite number of
distinct tuples that can be generated; therefore, the
algorithm must terminate. We need to show that the set S
computed by the algorithm is

1. sound,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2000

Algorithm 4:

Constant-free Data-Independent Disclosure Cover

2. Construct r to be {t,...

of C.

6. Return S as output.

INPUT 1. P={llx,0c,,...,Ix, oc, } (Cis are conjunctions of equalities between attributes)
2. D (set of Horn-clause constraints without constants)

OUTPUT S (existential disclosure cover of P under D)

METHOD 1. (Initialization) for every Ilx,oc, € P generate a tuple t; as follows:

(a) for each attribute A; € X; assign the variable .

(b) if C; contains equality among two attributes A; and A; such that at least
one of them is in X; then assign variable a: to both A; and A4;.

(c) Assign unique null values to attributes that were not considered pre-
viously, while preserving equalities in C;; ie., if A; = A; € C; and
Ai, A; ¢ X; then assign the same null value to both A; and A;.

stm}

3. Chase r with D to generate 7'

4. Compute S as follows: for each tuple ¢t € ' generate a query Iy o, where
(a) Y contains all the attributes 4; where t[4;] = x
(b) C has all the equalities among null values.

5. (a) Continue until no more changes occur:

for every two different queries llyoc and Iy o in S, if Uyoo ~v
[Iy+o¢r then remove [y oo from S.

(b) for every query llyoc in S, replace C by an equivalent minimal subset

Fig. 5. Constant-free data-independent disclosure cover.

2. complete, and
3. compact.

Proof of soundness. It is sufficient to show that S

constructed in Step 4 (i.e., before Step 5) of Algorithm 4
is sound. This follows from the following two claims:

Claim 5. Every Ilyoc € S is existentially disclosed from P

under D and

Claim 6. If P~ Ilyoc and lyoc ~, yoc, then

P ~>3D Hyr()'(j/.

To prove Claim 5, we construct an example relation
Ter that satisfies D, sets P, C IIx,0¢,(7ex), (i =1,...,m),
PF € Mlyo¢(re,), and show that

(Pn,x,00,)} Fp (PF,Ilyoc).

Let 7., be a relation over R that contains only one
tuple t., such that, for each attribute, A; € R, t.,[A] =¢,
where c¢ is a constant. Clearly, ., satisfies D. Let P, =
IIx,0¢,(re;) for i =1,...,m. Note that, since C; contains
only equalities among attributes, t., satisfies all of the
queries and the answer to the query Ilx,oc, is the
projection of t., on attributes X;. Also, PF = Ilyo¢c(re,).

We use Algorithm 3 (Data-dependent disclosure cover
algorithm) to show

{(P,1Ix,0¢,), -+, (P, x, 0¢,)} Fp (PF,yoc).

Let 7 be the relation generated from Pi,..., P, at the
beginning of Step 2 on Algorithm 3. Note that, at this
stage, each P;, i =1,...,m has already been chased by

the dependencies which were generated by the selection
conditions of the queries. This application of dependen-
cies is equivalent to the initialization Steps 1a and 1b of
Algorithm 4.

We want to show that if a sequence of dependency
applications by Algorithm 4 created a tuple ¢ that was
used to generate Ilyoc in S, then the same sequence of
dependency applications will generate a tuple ¢ € 7 by
Algorithm 3 such that PF over Ilyoc can be generated
from t. From this and Theorem 4.2, it follows that every
IIyoc € S is existentially disclosed from P under D.

To show that the application of dependencies on 7 will
indeed generate the tuple ¢, notice that 7 and r, the input
relation in Step 2 of Algorithm 4, are isomorphic with the
only difference that, in places where r has a variable, 7
has the constant c. But then, the chase process executes
exactly the same way on both r and 7.

To prove Claim 6, note that, because P ~>__Ilyoc,
there exists ~ over R that satisfies D, P, C Ily,o¢, Er) for all
i=1,...,n,and PF € llyoo(r) such that

(P, Oy,0¢,), - - -, (P, y,0¢,)} Fp (PF,Tlyoc).

Also, from Ilyoc ~_ Ilyvocr and Proposition 5.1, we
know that Y' CY, C" A C is consistent and C | C”,.. To
show that P ~>on Iy o¢r, we construct an example
projection fact PF” over Ily:oc such that we can prove
that there exists a relation 7’ that satisfies D, sets of
projection facts P, ¢ = 1,...,n, such that P, C Ily,0¢, (1),
PF’ € Ilyioc (') such that

{(P17HKUCL)7 ER) (PmHYnO-Cn)} ':D (PFI7HY’UC’)'

BRODSKY ET AL.: SECURE DATABASES: CONSTRAINTS, INFERENCE CHANNELS, AND MONITORING DISCLOSURES 13

For this, construct a tuple ¢ that satisfies C' A C’ out of
PF. This tuple exists since C' A C’ is consistent. Then, let
PF’ be IIy:(t). By construction, and the fact that Y’ C Y,
we have PF’' =1ly/(PF). From

{(PhHYlO'Cl)v ceey (RL»HX.OCn)}):D
(PF,Ilyoc)P; C y,0¢,(r).

for all ¢ =1,...,n implies PF € Ilyoc(r). Then, there
must exists a tuple ¢’ in 7/ such that PF =1IIy (') and,
because PF’' =1ly:/(PF), we have PF' =TIy (¢). Also,
because t' satisfies C' and C |z C",, t' also satisfies C'.
But then, we have PF' =Ily.o¢ () and, therefore,
PF' € Ily:oc(r'). But, this is exactly the requirement
for existential disclosure, thus 73~>3 IIy.oc. This
completes the proof of Claim 6. This completes the
proof of soundness.

Proof of completeness. First we show that, for S generated
in Step 4 (i.e., before Step 5) in Algorithm 4 and for every
query Ilyoc, P~ > IIy o implies that there exists
IIyoc € S such that IIyoeo ~> Iy ocr, that is, Step 4 of
Algorithm 4 generates a tuple over Y and equality
among null values such that C' = 4; = A; € C', where 4;
or A;¢Y.

Since P ~>2p IIy:.0¢, there must exist

1. a relation r that satisfies D,
2. BgHXIO'Q(T), i:l,...,m, and
3. PF e€Ilyoc(r) such that

(P 10x,00,), ..., (P, 10k, 00,)} Fp (PF, Iypimcocr).

But then, by Theorem 4.2, Algorithm 3 will generate a
projection fact that contains PF if P, ..., P, are given as
input.

Let 7 be the relation generated from Pi,..., P, at
the beginning of Step 2 of Algorithm 3, i.e., each P, is
already chased by dependencies generated from the Cjs.
Let Dy,..., D; the sequence of dependency applications
that generated the tuple ¢ which was used to extract
(PF,ly.0¢). We want to show that 1) Dy,...,D; can
be applied on r, the relation generated in Step 2 of
Algorithm 4, and 2) the application of Di,...,D; by
Algorithm 4 will generate a tuple that corresponds to
query Ilyoc, where Ilyoc ~>3 IIy.o¢c. For this, we use
the notion of generally corresponding tuples. We say,
that the tuple ¢ e r generally corresponds to tuples
t1,...,t; if there exist mappings ui,...,v;, which
preserve equalities such that ¢ =uv,(¢1),...,t = v(ts),
where v; maps all constants into = and is the identity
mapping for the null values.

Clearly, at the beginning there exist such mappings
from all of the tuples of 7 to the tuples of r. Assume that
D; is applied on tuples t;,...,%; € 7 that created the
tuple t. Since v;s preserve equalities, D; can be applied
on the generally corresponding tuples of ¢;,...,t;;, and
the generated tuple ¢ is defined as follows:

1. If D, is an equality generating dependency which
replaces all occurrences of a null value in 7 and,
because v;s are the identity mappings for the null
values, the application of D; on r will replace all

occurrences of the same null value in the
generally corresponding tuples.

2. If D; is a tuple generating dependency that
generated the new tuple ¢ = (h(a1),...,h(a,)) in
7, when applied on the generally corresponding
tuples it will generate a tuple

(v(h(a1)),...,v(h(an))) = v(h(ar),...

in 7.

7h(an))

But then, after the application of dependencies on
both 7 and 7, there is a generally corresponding tuple in r
for every tuple ¢ € 7. To complete the proof of complete-
ness, we need to show that eliminating queries from & in
Step 5 of Algorithm 4 still leaves the set S complete.
Specifically, we need to show that if IIy o is eliminated
from S in Step 5 because Ilyo¢ ~>, Ily ocr for a query
IIyoc in S, then, for every Ily»ocr such that

HY/O'CI fv>3 HY”O’(]N = Hya'c ~>3 Hy//o'(;//,

First, since C' must be consistent, by Proposition 5.2,
universal dominance implies existential dominance and
thus HYUC ~>3 HYIU(}/. Then, since HYIU(}/ ~>3 HYHO'CH, by
transitivity of existential dominance (Claim 6),

HYo'C f»>3 Hy// acr,

which completes the proof of completeness.

Proof of compactness. The compactness property follows
directly from the way S is constructed in Step 5 of
Algorithm 4. O

Similarly to Algorithm 3, the complexity of Algorithm 4
is O(nT - I™VT), where I is the number of symbols in r (see
Step 2 of Algorithm 4). Since I is bounded by ¢T', where ¢ is
the number of (}uerles in P, the complexity is bounded by
O(nT - (¢T)"™T). Of course, a typical input size of
Algorithm 4 is much smaller than the input size of
Algorithm 3 since Algorithm 4 only considers queries, not
the actual data. Next, we give an example of applying
Algorithm 4.

Example 5.1. This is a detailed illustration of generating a
data-independent disclosure cover for the queries,

IlsarARY, RANK

and IIxaap rank. The input to Algorithm 4 is:

P = {Isarary rank, UnamerANk }

and

D = {R[RANK = r,SALARY =]\
R[RANK =T, SALARY = 82] — 81 = 82}.

Table 4a shows tuples generated in Step 1 of
Algorithm 5 from P. Next, the functional dependency
in D is applied with mapping h, where h(r) =2«
h(s1) =z, and h(ss) = 83. The result of the application
is that 63 is replaced with z (Table 4b). Since the
functional dependency cannot be applied again, S that
is generated in Step 4 of Algorithm 4 is:

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2000

TABLE 4
Relations Generated by Algorithm 4

NAME | RANK | SALARY | EXPERIENCE (years) |

01 T T 09

T z 03 04
(@)

| NAME | RANK | SALARY | EXPERIENCE (years) |

(51 X X (52

z z T 04

(b)

S = {llpank,sarary, IINAME RANK,SALARY }-

Since Hnanmerank,sacary ~>, Hrank sazary, the final
output of Algorithm 1is §= {HNAME,RANK,SALARY}'
Since S discloses a top-secret object, the second query is
rejected.

For the case with constants, we need additional notions,
such as weak-transitivity and generalized atom mapping,
which we define next.

Definition 5.3 (Weak-transitivity). Let E be a binary relation
over the set V' of variable names, null-values, and constants. E
is weakly transitive if. for every a,b, and c in V where a and
c are not two different constants, (a,b) € E, (b,c) € E imply
that (a,c) € E. From now on, we denote (a,b) € E by a ~ b.

Definition 5.4 (Generalized atom mapping). Let d be a
dependency of the form By, ..., B, — H, r be a relation over
the set V of variable names, null-values, and constant, and E
be a weakly transitive binary relation over V. A generalized
atom mapping h (with respect to d,r, and E) is a function
h:{Bxi,...,By} — r such that

1. h preserves constants, i.e., if h(R[...,A; =¢,...]) =
(c1,---y¢Ciy. ..) and c is a constant, then ¢ ~ c¢;.

2. h preserves equalities, i.e., if B, = R[..., A, =a,..],
B;j=R[...,Ai=a,..] and

h(BL) 5 (Cl, .
h(B;) = (c,..

1 Cn),

/ !
s C),s

ey Clyev s

then ¢, ~ .

Note that i extends to a mapping from the symbols of d
to sets of symbols of r. The reason is that, by definition of
atom mapping h, two equal symbols of d may be mapped to
two (possibly different) symbols of r that are related by E,
ie., if si,s3 € h(a), then s; ~s;. The application of
dependencies is defined as follows:

Definition 5.5 (Application of dependencies). An E-
Application of a dependency d on (r,E) with respect to
atom mapping h is defined as follows:

1. If d is an equality-generating dependency of the
form By,...B, — a=>, then, for every pair si,s;
such that s; € h(a), s2 € h(b), s1,s2 are not two
different constants, and s, ~ sy is not in E

a. add sy ~ sy to E, and
b. close the result under weak transitivity

2. If d is a tuple-generating dependency of the form
By,...B, — R[A1 = ay,..., A, = a,), then select re-
presentatives s, . .., s, from the sets h(a1), ..., h(ay)
as follows:

a. If there exists a constant ¢ € h(a;), then s; = ¢,
b. Else, if there exists a wvariable x € h(a;), then
S =T,
c. Otherwise, s; = 6;, where ; is any null-value in
h(a,,;).
If tuple (sq, ..
Algorithm 5, presented in Fig. 6, computes all the queries
that are existentially disclosed from a set P of queries by
database constraints D.

., Sp) is not in r, then add it to r.

Theorem 5.3 (Existential disclosure). Algorithm 5 terminates
and its output is a complete and compact set of existentially
disclosed queries.

Proof. Algorithm 5 must terminate because the application
of dependencies do not generate new symbols and,
therefore, only a finite number of distinct tuples and
relations of E’ can be created. We need to show that the
set S computed by the algorithm is 1) complete and
2) compact.

Proof of completeness. Let S be the output of Algorithm 5.
To show completeness of S, we have to prove that, for
every query Ily.oc, P ~>n IIyrocr implies that there
exists IIyoo € S such that Ilyoe ~> IIy.oc. Assume that
P~ lyoc, that is, by Definition 3.5, there exist

1. a relation r that satisfies D,

2. setsof projection facts P, C Ilx,o¢,(r),i =1,...
and

3. PF' €llyow(r) such that

{(Pl’HXlUCl)7") (P"HHXmUCm)} ':D (PFlvl_[Y’UC’)'

,m,

But then, by Theorem 4.2, if

{(P17HX1001)’ B (PmaHXmUGm)}

and D are given as the input for Algorithm 3, it must
generate a QA-pair (PF” Ilyrocr) that dominates
(PF' Tly:ocr). The proof of completeness is based on
the following claim:

Claim 7. The output S of Algorithm 5 contains a query Ilyoc
such that llyoc ~_ lyrocy, where C!' is the extension of C"
with all the equalities explicitly given in PF".

We first complete the proof of completeness and then
prove Claim 7. By construction of Ilyoc in Step 5 of
Algorithm 5, Ilyo¢ is in normal form. Let IIy-o¢ be the
normal form of the query Ilyiocr. To prove
yoc ~, yoc, it is sufficient to show that,

Hyoc ~, lly-ocr,

that is, by Proposition 5.1,

1. Y*CY,
2. CAC'is consistent, and
3. CEC,.

BRODSKY ET AL.: SECURE DATABASES: CONSTRAINTS, INFERENCE CHANNELS, AND MONITORING DISCLOSURES 15

Algorithm 5:

General Data-Independent Disclosure Algorithm

INPUT 1. P={lx,oc,,...,x, 0c, } (C;s are conjunctions of equalities of the forms 4; = A;
or A; = ¢, where A;, A; are attributes and c¢ is a constant..)
2. D (set of Horn-clause constraints)
OouTPUT S (Complete and compact set of existentially disclosed queries)
METHOD 1. (Initialization) for every Ilx,oc, € P, (i = 1,...,m) generate a tuple ¢; hy

assigning symbols to each attribute 4;, j =1,...,n as follows:

(a) if C; = A; = ¢, where ¢ is a constant, then assign ¢ to A;.
(b) else, if
o A4; € X;or
o there exists Ay € X, such that C; = A; = Ay
then assign variable x to Aj,
(¢) otherwise, assign null-values to A; as follows:
o if Ci = Aj = A, (k=1,...,j and Ay was assigned d; then assign
0r to Aj.
e else, assign a unique null-value §; to A;.
2. Construct r to be {t1,...,tm}
3. Construct a weakly transitive binary relation E over the set V' of symbols of r
and the constants of D as follows:
(a) E contains all reflexive pairs of the form = ~ x, §; ~ §;, and ¢ ~ ¢.
(b) for every constant ¢ that appears in 7 or in D, E contains equalities of

the form z ~ c.

4. E-Chase (r, E) with D; that is, E-Apply D on (r, E) until no more changes
occur. The result is (r', E').

5. Compute § as follows:
for each tuple t € ' generate a query Iy o, where

(a) Y contains all the attributes A; such that
L] t[f/ll] =T,
o t[A;] = ¢, where ¢ is a constant, or
e 1[A;] = d; and E' contains either §; ~ cor ¢; ~ =z
(b) C contains the following equalities
e A, =cift{A;] = cand
o A, =A;if A4;,A; ¢ Y, and t[A;] = §;, t[4;] = 6;, and E' contains
8; ~ 8.
6. (a) Continue until no more changes occur:
for every two different queries lIyoe and Tlyro¢r in S, if Myoo ~y
Her'(jr then remove Herl'(jr from S.

(b) for every query llyoe in S, replace C' by an equivalent minimal subset
of C.

7. Return S as output.

Fig. 6. General data-independent disclosure algorithm.

In the proof, we use the following facts: and C” contains only equalities among attributes that are
Fact 1. By Proposition 4.1, (PF',Ilyroc) E not in Y”. By Fact 1, C” = C. and, therefore, C! must
(PF' Ilyoc) implies C7 = C.. entail all of the equalities of the form A; = ¢ which are
Fact 2. By Proposition 5.1, Ilyoc ~_ Ilyrocy implies explicitly given in PF’. Therefore, Y* C Y” must hold.

This and Y” C Y (Fact 2.1) gives Y* C Y follows.

"
;' g// /%g’l s consistent. and From C” |= C! (Fact 1) and C” A C is consistent (Fact
: e ’ 2.2), it follows that C'AC’ is consistent. The only
3. CEC remaining part is to show that C [k C’,. Since
By construction of (PF”,Ilyrocv) in Algorithm 3, Y (PF" Ilyvocr) is in normal form (Theorem 4.2), CV

contains all the attributes that have constants assigned to contains two disjoint groups of equalities: 1) equalities

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2000

among attributes that are not in Y (equalities of C") and
2) equalities among attributes of Y (equalities of PF").
Therefore, if C!' = A; = Aj, where A; and A; are not in
Y”, then only equalities of group a can be used to derive
the entailment. We know that C = C!, more specifically,
C! k= (. Since Y =Y” and, by the above argument, we
have C”y, = C',. Then, by using C | C”, (Fact 2.3) and
the transitivity of logical entailment, we have C' = C’ .
This completes the proof of completeness.

To prove Claim 7, we use the notion of generally
corresponding tuples. Initially, we define general corre-
sponding tuples as follows: Let r; denote the relation that
was generated from {(P1, Iy, 0¢,),. .., (Pn,1x, 0c,)} by
Algorithm 3 in Step 2 as 7/ and 7, denote the relation
generated from {Ily,o¢,,...,Ilx, oc,} by Algorithm 5 in
Step 2 as r. Also, let ¢;,, ..., t; in 7 denote the tuples that
were generated in Step 1 of Algorithm 3 from the QA-
pair (P, IIx,0¢) (¢ =1,...,m) and ¢; in ro denote the
tuple that was generated from the query Ilx,oc,
(t=1,...,m) in Step 1 of Algorithm 5. Initially, we say,
that ¢; generally corresponds to the tuples t;,,...,t;. Let v
be the mapping that maps each tuple of r; to its generally
corresponding tuple in ;.

Consider the applications a; = (di,h1),...,ar =
(dg, hi) of dependencies in Algorithm 3 on 71, where d;
(t=1,...,k) is the dependency being applied and h;
(t=1,...,k) is the mapping being used. Let ri,
(¢ =1,...,k) denote the relation that was produced from
r1 =Y after applications of ai,...,a;. In the following
claim, we recursively define the corresponding applica-
tions a; = (dy, h1), .. .,a, = (di, hy) on ry = 19 (to be used

in Algorithm 5) that will produce 71, ..., 7%, and relations
E=EyE,... E,. Further, we define the mappings
v=uy,vi,..., v each v (i =0,...,k) from 7| to r.

Claim 8. v = v from ry = 1 to ry = 1) preserves constants and

equalities, i.e., for tuples t; and t;, in 7y,
1. If t1[A;] = ¢, where c is a constant, then

a. v(t)[Ai] # a1, where ¢; is a constant different
from c(i.e., c1 # ¢), and
b. v(t)[Ai] ~ z.

2. If 4lA)] = ti][A)], then v(t)[Ai] ~ v(tp)[4;], where
~ denotes the relation E defined in Step 3 of
Algorithm 5.

Further, forall i, i =1,.. .k

1. Definition. Given the application a; = (d;, h;), where

d; is of the form {By,...,B,} — H, h; is defined as
hi(B;) L,y (hi(By)), for all j=1,...n.

2. Claim. h; is indeed a generalized atom mapping with
respect to d;, rg‘l, and E;_4, i.e., Hi preserves constants
and equalities.

3. Definition. v; is defined as follows:

a. If d; is an equality-generating dependency and let
t' eri be the tuple that was originated from
t € ri7l, then if v;_1(t) = t, then v;i(t') = L.

b. Ifd, is a tuple-generating dependency such that a;
generated the tuple t €ri and a; generated

t €rh, then vi(t) = v, 1(t) for all tuples t in
rland y;(t) = 7.
4. Claim. v; from i to rh preserves constants and

equalities.

Before proving Claim 8, we complete the proof of
Claim 7. Let a4,...,a, be the dependency applications
on r; by Algorithm 3 that generated the tuple ¢ that was
used in Step 3 to construct the QA-pair (PF”, Hyrocn).
Let @i, ..., ay be the corresponding dependency applica-
tions, where each h; (i=1,...,m) is constructed as
defined in Claim 8.2. We order the dependency applica-
tions performed by Algorithm 5 on r; such that
@15y Qm,...,0y, 1€, a@,...,a, are completed before
any other dependency is applied by Algorithm 5. We can
reorder the dependency applications of Algorithm 5, by
the following Claim 9 which will be proven after we
complete the proof of Claim 7.

Claim 9. The output of Algorithm 5 is independent of the order of

the dependency applications.

Next, we apply ai,...,a, on ry in Step 4 of
Algorithm 5. By Claim 8, items 2 and 4, we know that,
for every tuple ¢ in 77", there is a tuple ¢ in 7%’ such that
v (t) = t and v, preserves equalities and constants. Note
that it is possible that Algorithm 5 will apply additional
dependencies after a,...,a, are completed. However,
since a dependency application can only add tuples to 73’
or extend E,,, the final relation " at the end of Step 4 of
Algorithm 5 must contain t and E' must contain E,,.

Let Iy o¢ be the query that was generated in Step 5 of
Algorithm 5 from ¢ and E'. To complete the proof of
Claim 7, we need to show that Ilyoc existentially
discloses Ily»ocr, ie., by Proposition 5.1 and 5.2, that
Y'"CY, CAC! is consistent, and CEC”,. Y'CY
follows from the fact that Y are exactly all attributes
in which ¢t has a constant, the fact that v, (recall
t = vp(t)) preserves constants and the way of construc-
tion Y in Step 5 of Algorithm 5.

To show that CAC! is consistent, we use the
following observations:

Observation 1. C' = Cy A C-y, where 1) Cy is the conjunction

of equalities of C of the form A; = ¢, where A, is an attribute
name and c is a constant, and A; € Y, i.e., t{A;] =c, and 2)
C-y is the conjunction of equalities of C of the form A; = A;,
where A; or A; is not in 'Y, and t[A;] ~ ¢[A;]. We claim that
Attr(Cy) N Attr(C-y) = 0.

Proof. Assume, by contradiction, that

A; € AttT‘(Cy) n AttT(Cﬁy).

But then, A; = cis in C, where cis a constant and A; = 4;
isin C, where A; € Y and A; ¢ Y. Then, t[4;] = ¢, and by
construction of E, ¢ ~ z. Also, t[4;] = s, where s is not a
constant and s = because A;¢ Y. However, from
t[4;] ~ t[A;], we have s ~ z, which constitutes a contra-
diction, thus Attr(Cy) N Attr(C-y) = 0 holds.

Observation 2. C! =Cy, ANC"y,, where 1) Cy, is the

conjunction of equalities of C of the form A; = ¢, where A;
is an attribute name and c is a constant, and A; € Y", i.e.,
t[A;] = ¢, and 2) C"\,, is the conjunction of equalities of C! of

BRODSKY ET AL.: SECURE DATABASES: CONSTRAINTS, INFERENCE CHANNELS, AND MONITORING DISCLOSURES 17

the form A; = A;, where A; or A; is not in Y" and
t[A;] = t[A;]. We claim that Attr(CY.) N Attr(C"y.) = 0.

-

Proof. Similar to the proof of 1.

Observation 3. C”,, = Cy_,. AC"y,, where 1) CY_y. is the
conjunction of equalities of C"y,,, where A; or AjareinY, and
2) C”y is the conjunction of equalities of C!, where A; or A;

are not in Y. We claim that Attr(CY_,.) N Attr(C”y) = 0.

Proof Assume, by contradiction, that 4; = A; in C”,.,
where A; € Y —Y” and A; € =Y. Then, t[A;] = t[A;] =,
where 6 is some null-value. Because v, preserves
equalities, we know that

Vi ()[Ai] = HA;] ~ v (8)[4;] = H[A}].
Further, because A; €Y, t[A;] ~ x. However, because
A;#Y, t[Aj] not a constant and #[4;] # z. But this is a
contradiction.

To complete the proof that C'ACY is consistent,
consider a graph G, in which the nodes are all the
attribute names, null-values, and constants of C' and C”.
There is an edge between two nodes A and B if and only
if C or C” contains the equality A = B. By contradiction,
assume that C'AC” is inconsistent. Then, there must
exist a path in G from a constant to a different constant.
Moreover, there must exist such a path, say P, of minimal
length, i.e., every path that is shorter than P cannot be
inconsistent. Let a and b (a # b) be the two end points of
P and e; be the first edge in P from a. The edge must be
of the form (a, A), ie., corresponding to the equation
a = A, where A is an attribute name. Therefore, by 1 and
2, ey is either in CY, or in Cy.

Case 1. If e; is in CY},, then t[A] = a. Consider the
second edge e;. It must be of the form (A, ¢), where cis a
constant, because Y” C Y and, from Observations 1 and
2, we know that A cannot appear in equalities of C”;., or
C.y. So, e; must appear in Cy, or in Cy that have
equalities of the form (A,c¢). If ey is in CY.,, then c=a
because CY, is consistent. If e, is in Cy, then
t[A] = v (¢)[A] = c. Since v, preserves constants, ¢ must
be the same constant as a. But then, the node a appears
twice in P, which contradicts the minimality of P.

Case 2. If e; is in Cy, then t[A] = a. Consider the
second edge e,. If A € Y”, then an argument similar to
Case 1 can be repeated to derive contradiction to the
minimality of P. Otherwise, if A €Y —Y”, then, by
Observations 1, 2, and 3, e; must be either in Cy or in

V_yn. If eg is in Cy, then it must be of the form A = ¢
and, because Cy is consistent, a = ¢ must hold, contra-
dicting the minimality of P. If e; is in C}_y., then it must
be of the form (A, A;), where A, is an attribute name. Let
(a,A), (A, A1), ..., (Ak-1, Ar), (Ak, c) denote a subpath of
P from a to the first constant node c. By 1, 2, and 3, all
edges (A, 41),...,(As-1, Ay) must come from C{_y., and
t[A] = t[A] = ...,=t[A) = 6, where ¢ is some null-
value. The edge (Aj,c) must be in Cy and, therefore,
t[Ag] = c. Because v, preserves equalities, we know that

Um(B)[A] = a ~ v (8)[A1] ~ ... ~ v (B)[Ax] = c.

Then, a ~ cis in E. Since E cannot contain a ~ ¢ for two
different constant, ¢ must be the same constant as a. But

then, the node a appears twice in P, which contradicts
the minimality of P.

This completes the proof that there does not exist a
path in G that connects two different constants, and,
therefore C' A C” must be consistent.

Finally, if ¢t has the same null-value for attributes A;
and Aj, then, because v, preserves equalities, attributes
A; and A; of ¢ must have symbols that are related by E. If
A; and A; are not in Y, then both {[4;] and t[A,] are two
null-values which are related by E and, therefore, C
contains the equality A; = A;. Therefore, C = C”,.. But
then, by Proposition 5.1, we proved that, for any
(PF" Ilyrocr), Algorithm 5 will generate a query Ilyoc
such that IIyoo ~> Hy//Uc(/{.

To complete Claim 7, we have to show that, after the
query Ilyoc is removed from S in Step 6a of Algorithm 5
because there exists a query Ilyos € S such that
Iyoes ~>y IIyoc, we still have Iyoes >, HyHO'CL/.

1. From Ilyoo ~> [Iy»ocr, we know that

a. Y'CY,
b. CY AC is consistent, and
c. CEC,.

2. From Ilyos >y IIyoc, we know that

a. Y CY,

b. CAC is consistent,
c. CECy, and

d. CECy.

From 1a and 2a, it follows that Y” C Y. To show that
C A C" is consistent, assume, by contradiction, that C' A
C" is inconsistent, i.e., C” EFA;=a and O A; =,
where a and b are two different constants. By construc-
tion, both Ilyos and Ilynocr are in normal form. Then, if
C!'E A =a, A €Y” and, since Y" CY, 4; € Y. From
2d, we know that C | Cy and, therefore, C E A =b.
Moreover, from 1b, we know that C/ACE A, =
aNA; =0 is consistent. But, this is a contradiction,
therefore, C' A C! is consistent. Finally, from 1lc and 2c
and the facts that Y” CY C Y, it follows that C' = C”,.
Thus, by Proposition 5.1, Ilyos ~> Iy»ocr. This com-
pletes the proof of Claim 7.

We prove Claim 8 by induction on the number of
dependency applications in Algorithm 3 and the
corresponding applications in Algorithm 5. First, we
show that 1y preserves constants and equalities. Con-
sider tuples t;,...,t;, in ¥ and #; in 79, as they were
defined initially for generally corresponding tuples. By
construction of ¢;, (j =1,...,1) in Step 1 of Algorithm 3,
t;, contains a constant for an attribute Ay, if and only if
either

1. Cj ': Ak =C,

2. Ap€eX;, or

3. there exists 4; € X; such that C; E A, = A;.
In addition, by construction of ¢; in Step 1 of Algorithm 5,
we know that 1) if C; E Ay = ¢, then #;[A;] = c else 2) if
A, € X; or there exists A; € X; such that C; | A, = A,
then #;[A;] = z.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2000

Then, for all attributes A4y, that¢;, (j =1,...,I) contains
a constant, ¢; contains either a constant or the symbol z. If
ti[Ar] = ¢ (Ci | Ap = ¢), then all tuples ¢;, (j=1,...,])
must have ¢;[A;] =c and w(t;;)[Ar] = ¢; Property 1la
must hold. Because E, that was constructed in Step 3 of
Algorithm 5, contains all reflexive pairs z ~ x and = ~ ¢
for all constants ¢ that appear in 7, or in the
dependencies, Property 1b must hold and, therefore,
Property 1 holds. Moreover, equalities among the
constants of ¢;; (j=1,...,l) are preserved. To show that
1y also preserves equalities among the null-values of ¢;,
notice that, initially, we assign unique null-values for all
attributes of ¢;, (j =1,...,]) that do not already have a
constant assigned to. In Step 1c, Algorithm 3 will equate
null-values of t;; only if C; entails their equalities. But
then, by construction of ¢; in Step 1c of Algorithm 5, ¢;
must contain the same null-value for these attributes
and, therefore, 1 preserves equalities. This completes the
proof that 1 preserves constants and equalities.

Assume that the claim holds for i — 1 application, i.e.,
that v;_; preserves constants and equalities. Note that h;
is an atom mapping, thus it also preserves constants and
equalities. Then, if

i1
hi(R[...,Aj=c,..])=(c1,...,Cj...,c0) ET]
then ¢; = c¢. Moreover, if
,'71
Vici(et, oo CjyveoyCn) = (S15- 238450, 80) €Ty 5
then s; is not a different constant from ¢;, and = ~ s;. By

construction of E, we know that x ~ ¢ and, therefore,

s; ~ ¢, thus

hi(R[...,A]':C,...]):(817...76’]',...,5”),

where s; ~ ¢ ~ z, thus, hi preserves constants.
Further, if

hi(Rl..., A =a,..]) = (c1, .y onyea) €777
and
hi(R[“.’Al:a""D:(017"'70;7“-70;1,) e'f“i{la

then ¢;, = ¢|. Moreover, if

Vifl(cla---ack‘v"'vcﬂr) :(517-"751{7"'3371) erié_l
and
Vica(dyooosdyeyd) = (84,0080, .0, 8)) Er;_l,

then sj, ~ sj. Therefore,

hi(R[..., Ak =a,...]) = (81, , 8k 8n)s
hi(R[...,Aj=a,...]) = (s},...,8),...,8,),

and s; ~ s}, thus h; preserves equalities.

The only remaining part is to show that v; from r’i to
7!, preserves constants and equalities. If d; is an equality-
generating dependency of the form B;,...,B, —a =1,
then a; equates two symbols h;(a) and h;(b) of ri~! by
replacing all occurrences of one of them with the other,
say all occurrences of h;(b) are replaced with h;(a). We

know that all occurrence of h;(b) are mapped by v,_; into
symbols of 75!, which are related to each other by E;_;.
The application a; extends F;_; by adding relations s; ~
sy for every pair sy, sy such that s; € hi(a) = vi_1(hi(a))
and s, € hy(b) = v;_1(hi(b)) and closes it under weak
transitivity.

Since a; equated h;(a) and h;(b) of ri™' and v
preserves constants and equalities, we know that h;(a)
and h;(b) cannot be different constants. Moreover, by
extending E;_; for all possible pairs s; ~ sy, it is ensured
that all occurrences of h(a) in ri are mapped into symbols
of r} that are related by E;. For example, if t1[A;] = h;(a),
to [Ak} = h7(b), Vi_l(tl)[Al} = 81, and Vi_l(tz)[Ak] = 89, then,
after the applications a; and a;, we have t3[A;] = hi(a),
vi—1(t2)[Ax] = s where s; ~ s;isin E;. Therefore, after the
applications (d;, h;) on 7" and (d;, h;) on 75", where d; is
an equality-generating dependency, v; from 7| to 7}
preserves constants and equalities.

If d; is a tuple-generating dependency and «;
generated the tuple t = (h;(ay),...,hi(a,)) in ri, then a;
will generate a tuple ¢ in 7}, where

E: (Vi—l(hi(al))7 ey Vi,l(hi(an))) = Vi,l(hj(al), ey hi(an)).

Then, v;_1(t) = t. Clearly, v; from 7} to r} coincides with
vi_1 on the tuples of ri~! and ri!. Further, v; maps the
new tuple t€r! to the new tuple ¢€r) where
vi—1(t) = t. But then, since v;_; preserved constants and
equalities, v; does too. This completes the proof of Claim
8.

The only remaining part is the proof of Claim 9. Let
(ry, E') and (r4, E") denote the results of two different
sequences of dependency applications, aj,...,a; and
al,...,a}, at the end of Step 4 of Algorithm 5. Assume,
by contradiction, that (r;, E”) and (r}, E"”) are not the
same (up to the renaming of the null-values), i.e., one of
them contains either a tuple or a pair s; ~ s that is not
present in the other. Assume that (4, E') contains a tuple
or a pair that is not in (r}, E”). Since rj must contain all
the tuples of r, and E” must contain all of the relations of
E, we can apply aj,...,a; on (ry,E"), ie., using r}
instead of ry and E” instead of E. We know that the
applications aj,...,a must produce the tuple or the
relation that was not in (rj, E”). But, this is a contra-
diction because, originally, when (v}, E”) was generated,
the E-Chase process could be terminated only if no more
dependency could be applied that resulted in a change.
Therefore, (14, E') and (ry, E”) must be equal, and this
completes the proof of Claim 9.

Proof of compactness. The compactness property follows
directly from the way S is constructed in Step 6 of
Algorithm 5. O

The complexity analysis of Algorithm 5 is similar to the
one of Algorithm 4, but requires an additional argument.
The difference is that not every iteration of the E-Chase in
Step 4 of Algorithm 5 creates a new tuple. Each application
of a tuple-generating dependency is bounded by I7, where
I is the number of symbols in r and T is the number of

BRODSKY ET AL.: SECURE DATABASES: CONSTRAINTS, INFERENCE CHANNELS, AND MONITORING DISCLOSURES 19

TABLE 5
Tuples Generated in Step 1 of Algorithm 5 from the Queries
IIsarARYoRANK=Clerk @Nd IINAME RANKoEXPERIENCE=10-

[NAME [RANK [SALARY | EXPERIENCE (ycars) |

01 Clerk T Jo
x x 03 10

attributes of r. Every equality-generating dependency
application must add a pair to the binary relation E. Since
the size of E is bounded by I?, the number of such iterations
is bounded by I 2 In total, the number of iterations is
bounded by IT + I?, which is O(I7), the same as the
complexity of the chase in Algorithm 4. Therefore, the
complexity of Algorithm 5 is the same as the complexity of
Algorithm 4, that is, O(nT - (¢I) " IT), where ¢ is the
number of queries in P. Next, we give an example to show
how data-independent disclosure cover can be computed.

Example 5.2. This is the detailed illustration of generating
the data-independent disclosure cover for the queries,
Hsararyorank=cierk and IlyayvprANKOEXPERIENCE=10,
which were presented in Example 2.1. The input of
Algorithm 5 is:

P = {HSALARYURANK:Clerk> HNAJ\IE,RANKUEXPERIENCE:N}

and

D ={R[RANK =r,SALARY = s1]A
RIRANK =r,SALARY = s3] — s1 = $2}.

Table 5 shows tuples generated in Step 1 of Algorithm
5 from P. The weakly transitive relation, E, contains all
reflexive pairs of the form s ~ s over the symbols s of
Table 5 and the pairs « ~ Clerk and « ~ 10. Next, the
functional dependency in D is applied with generalized
atom mapping h, where h(r) = Clerk ~ z, h(s;) = z, and
h(s2) = 83. The result of the application is the extension
of E with the pair x ~ 63. After this, £ is closed under
weak transitivity to derive new relations Clerk ~ x ~ 63
and 10 ~ z ~ 63. Since the functional dependency cannot
be applied again, the final output of Algorithm 5 is

S= {HNA]VIE,RANK,SALARY‘EXPERIENCEUEXPERIENCE:10}~

Since S discloses a top-secret object, the second query is
rejected.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we attempted a systematic classification of the
inference problem in terms of

1. data-dependent versus data-independent disclosure,
properties of soundness and completeness of dis-
closure inference algorithms to ensure confidential-
ity of data while supporting data availability,

3. expressiveness of constraints domains used to
represent database and metadata constraints, and

4. design-time versus query-time inference detection
and elimination frameworks.

Most importantly, we developed actual inference algo-
rithms for both data-dependent and data-independent
disclosures for a highly expressive family of Horn-clause
constraints. These constraints can express not only func-
tional, multivalued, and join dependencies (or their
combinations), but also metadata that might be known by
users.

We conclude by listing some suggestions for further work.
This paper focuses on multiple attacks of a single user.
However, in a real-life environment, it is possible that
malicious users share their information to obtain data for
which they do not have the proper authorization. With little
modification, DiMon can protect against collaborating users
as well. From the perspective of users’ interaction, we
distinguish among the following types of attacks:

1. single user attacks, where each user is considered
individually,

2. attacks of collaborating users, where all of the users
are assumed to collaborate with each other, and

3. attacks of collaborating groups of users, where only
certain groups of users are assumed to share their
information.

Another future direction is to incorporate the problem of
data aggregation into the model [10]. The aggregation
problem occurs if a certain number (threshold) of data items
can be released safely while if the size of the aggregate
exceeds this number, the security is violated. We believe
that database dependencies, especially tuple generating
dependencies, should be incorporated to provide secure
aggregation control. Note that the inference problem can be
viewed as a special type of aggregation problem with zero
threshold value.

Finally, our model could be extended to handle other
kinds of constraints, such as more general arithmetic
constraints or embedded generalized dependencies. How
to do this with preservation of soundness and completeness
of inference algorithms remains an open question.

REFERENCES

[1] A. Brodsky, C. Farkas, and S. Jajodia, “Data Disclosure and
Inference Channels,” technical report, George Mason Univ., 2000.

[2] L.J. Buczkowski, “Database Inference Controller,” Database Secur-
ity III: Status and Prospects, D.L. Spooner and C. Landwebhr, eds.,
pp. 311-322, 1990.

[3] S.Dawson, S. De, C. di Vimercati, and P. Samarati, “Minimal Data
Upgrating to Prevent Inference and Association Attacks,” Proc.
18th ACM SIGMOD-SIGACT-SIGART Symp. Principles of Database
Systems, pp. 114-125, 1999.

[4] S.Dawson, S. De, C. di Vimercati, and P. Samarati, “Specification
and Enforcement of Classification and Inference Constraints,”
Proc. IEEE Symp. Security and Privacy, 1999.

[5] D.E. Denning, “Commutative Filters for Reducing Inference
Threats in Multilevel Database Systems,” Proc. IEEE Symp. Security
and Privacy, pp. 134-146, 1985.

[6] J.A. Goguen and]. Meseguer, “Unwinding and Inference
Control,” Proc. IEEE Symp. Security and Privacy, pp. 75-86, 1984.

[71 T.H. Hinke, “Inference Aggregation Detection in Database
Management Systems,” Proc. IEEE Symp. Security and Privacy,
pp. 96-106, 1988.

[8] S. Jajodia and C. Meadows, “Inference Problems in Multilevel
Secure Database Management Systems,” Information Security: An
Integrated Collection of Essays, M.D. Abrams, S. Jajodia, and H.
Podell, eds., pp. 570-584, Los Alamitos, Cailf.: IEEE CS Press,
1995.

20 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2000

[9] D.G. Marks, “Inference in MLS Database Systems,” IEEE Trans.
Knowledge and Data Eng., vol. 8, no. 1, pp. 46-55, Feb. 1996.

[10] D.G. Marks, A. Motro, and S. Jajodia, “Enhancing the Controlled
Disclosure of Sensitive Information,” Proc. European Symp.
Research in Computer Security, pp. 290-303, 1996.

[11] S. Mazumdar, D. Stemple, and T. Sheard, “Resolving the Tension
between Integrity and Security Using a Theorem Prover,” Proc.
ACM Int’l Conf. Management of Data, pp. 233-242, 1988.

[12] C. Meadows, “Extending the Brewer-Nash Model to a Multilevel
Context,” Proc. IEEE Symp. Security and Privacy, pp. 95-102, 1990.

[13] M. Morgenstern, “Controlling Logical Inference in Multilevel
Database Systems,” Proc. IEEE Symp. Security and Privacy, pp. 245-
255, 1988.

[14] G.W. Smith, “Modeling Security-Relevant Data Semantics,” Proc.
IEEE Symp. Research in Security and Privacy, pp. 384-391, 1990.

[15] P.D. Stachour and B. Thuraisingham, “Design of LDV: A Multi-
level Secure Relational Database Management System,” IEEE
Trans. Knowledge and Data Eng., vol. 2, no. 2, pp. 190-209, June
1990.

[16] T. Su and G. Ozsoyoglu, “Inference in MLS Database Systems,”
IEEE Trans. Knowledge and Data Eng., vol. 3, no. 4, pp. 474485,
Dec. 1991.

[17] T.H. Hinke, H.S. Delugach, and A. Chandrasekhar, “A Fast
Algorithm for Detecting Second Paths in Database Inference
Analysis,” . Computer Security, vol. 3, nos. 2 and 3, pp. 147-168,
1995.

[18] B.M. Thuraisingham, “Security Checking in Relational Database
Management Systems Augmented with Inference Engines,”
Computers and Security, vol. 6, pp. 479-492, 1987.

[19] J.D. Ullman, Principles of Database and Knowledge-Base Systems,
vols. 1 and 2. Rockville Md.: Computer Science Press, 1988.

”“ Alexander Brodsky received the BSc degree in
mathematics and computer science and the MS
and PhD degrees in computer science in 1991
and 1983, respectively, from the Hebrew Uni-
versity of Jerusalem. He is currently an associ-
ate professor of information and software
engineering at George Mason University
(GMU), where he began in 1993 from the IBM
T.J. Watson Research Center. At GMU, he
leads a research group in constraint databases
and programming, funded by the US National Science Foundation
(NSF), Office of Naval Research, and NASA. His main research
interests and publications combine the area of databases (including
integration of constraint, spatial, and temporal data within constraint
databases, database optimization, algebras, algorithms, indexing and
filtering, and models and languages) and the area of constraint
programming (including algorithms for arithmetic and finite domain
constraints, mathematical programming, and logical f systems with
decidable constraint theories). He is a recipient of the NSF research
initiation award and of the NSF CAREER award. He served on the
program committees of numerous computer science conferences, as an
invited member of the ACM Strategic Directions in Computing Research
Group in Constraint Programming and in the group on Electronic
Commerce and Digital Libraries, and coedited an LNCS volume on
Constraint Databases and Applications. He served as conference chair
of the Fifth International Conference on Principles and Practice of
Constraint Programming (CP ’99).

N
il
{ll"} Iﬁm

Csilla Farkas received the BS degree in
geology from Eotvos Lorand University, Hun-
gary, the BS degree in computer science from
SZAMALK, Hungary, and the MS degree in
computer science from George Mason Univer-
sity (GMU), Fairfax, Virginia. She is a PhD
candidate at GMU. Her research interests
include database management systems, infor-
mation security, data mining, and scientific
/ databases. Before joining GMU, she worked
for the Hungarian River Exploration Company as a computer specialist
and for the Hungarian Geophysical Exploration Company as a geologist
and computer specialist. She has been a graduate research assistant in
the Information and Software Engineering Department at GMU since
1996.

Sushil Jajodia received the PhD degree from
the University of Oregon, Eugene. He is a
professor and chairman of the Department of
Information and Software Engineering and di-
rector of the Center for Secure Information
Systems at George Mason University (GMU),
Fairfax, Virginia. He joined GMU after serving as
the director of the Database and Expert Systems
Program within the Division of Information,
Robotics, and Intelligent Systems at the US
National Smence Foundation. Before that, he was the head of the
Database and Distributed Systems Section in the Computer Science
and Systems Branch at the Naval Research Laboratory, Washington
and associate professor of computer science and director of graduate
studies at the University of Missouri, Columbia. He has also been a
visiting professor at the University of Milan, Italy, and at the Isaac
Newton Institute for Mathematical Sciences, Cambridge University,
England. His research interests include information security, temporal
databases, and replicated databases. He has published more than 200
technical papers in refereed journals and conference proceedings and
has edited 12, including Temporal Databases: Research and Practice
(Springer-Verlag Lecture Notes in Computer Science, volume 1,399,
1998), Advanced Transaction Models and Architectures (Kluwer, 1997),
Multimedia Database Systems: Issues and Research Directions
(Springer-Verlag Artificial Intelligence Series, 1996), and Information
Security: An Integrated Collection of Essays (IEEE Press, 1995). He
received the 1996 Kristian Beckman award from IFIP TC 11 for his
contributions to the discipline of Information Security.

Dr. Jajodia has served in different capacities for various journals and
conferences. He is the founding co-editor-in-chief of the Journal of
Computer Security. He is on the editorial boards of IEEE Concurrency,
ACM Transactions on Information and Systems Security, and the
International Journal of Cooperative Information Systems. He has been
named a Golden Core member for his service to the IEEE Computer
Society. He is a past chairman of the IEEE Computer Society Technical
Committee on Data Engineering. He is a senior member of the IEEE and
a member of the IEEE Computer Society and the ACM. The URL for his
web page is http://isse.gmu.edu/csis/faculty/jajodia.html.

