
Creating Non-decomposable Stream Bundles in
Multimedia Web Services using uSMIL∗

Work in Progress

Naren Kodali
Dept of Info. and Soft. Eng.
George Mason University,
Fairfax, VA 22030–4444

nkodali@gmu.edu

Csilla Farkas
Info. Security Laboratory

Dept of Comp. Sci. and Eng.
University of South Carolina,

Columbia, SC 29208

farkas@cse.sc.edu

Duminda Wijesekera
Center for Secure Info. Syst.,

George Mason University,
Fairfax, VA 22030–4444

dwijesek@gmu.edu

ABSTRACT
Technical advances in networks, operating systems and web
based services are enabling new web-based services such as
audiovisual surveillance, monitoring and recording of un-
folding real world scenes. Leaving room to alter the chronol-
ogy of such real-world recordings would facilitate the abil-
ity to fabricate audiovisual evidence, thereby seriously erod-
ing emerging public trust on these up and coming services.
One way of avoiding this problem is to be able to specify
which chronology building composition operators - otherwise
known as multimedia synchronization constructs - such as
before, after, simultaneously etc., have more rigid failure se-
mantics. Existing W3C standard for multimedia services,
the synchronized multimedia integration language (SMIL)
does not provide them. In order to address this deficiency,
we propose uSMIL - an extension of SMIL that allows the
creation of non-decomposable stream bundles with an all or
nothing playout semantics. Here we present a report on our
work in progress that defines a formal operational semantics
for uSMIL and show some of its algebraic properties.

Categories and Subject Descriptors: F.3.2 [Semantics]:
Algebraic approaches to semantics

General Terms: Security, Design, Theory.

Keywords: Synchronized Multimedia, Semantics, Integrity,
Evidence Fabrication.

1. INTRODUCTION
As service provisioning is gaining popularity and multi-

media is becoming a more convincing medium to convey
more information on the web, many new applications such

∗This work was partially supported by the National Science
Foundation under grants CCS-0113515 and IIS-0112874.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Workshop on Secure Web Services, October 29, 2004, Fairfax VA,
USA.
Copyright 2004 ACM 1-58113-973-X/04/0010.... ...$5.00.

as internet movies, digital music libraries, electronic surveil-
lance over the web onto handheld devices, real-time traffic
management, secure video conferencing are becoming avail-
able as web based services. In recognition of this trend the
W3C proposed a language synchronized multimedia integra-
tion language (SMIL) to specify multimedia compositions
to be distributed over the world-wide web. SMIL provides
many constructs such as simultaneous and sequential play-
out of evolving scenarios etc., that can be used to mix and
match many real-time streaming media sources to convey
a well orchestrated unfolding of incidents. Among those
there are many applications such as surveillance and moni-
toring where preserving the exact chronology of evolution is
paramount to the comprehension of reality. If not done with
care, recording of such histories can be used to manufacture
or alter the chronology and thereby fabricate or tamper with
audio-visual evidence. One way to preserve recorded audio-
vidual reality is to ensure that constructs used to define the
synchrony and the chronology of evolution be given rigid,
non-alterable semantics, so that any attempted alteration
results in losing all of the constituent media streams. If pos-
sible, that would lead to the creation of non-decomposable
bundles of multimedia streams, which is the subject mat-
ter of our current investigation - of which we present some
preliminary results.

We provide such a capability by providing chronology
creating operators of media streams - otherwise known as
multimedia synchronization constructs that cannot be bro-
ken, thereby referred to as unbreakable synchronization con-
structs. Existing SMIL syntax do not provide such con-
structs. Consequently, we enhance SMIL to SMIL with un-
breakable synchronization constructs (uSMIL) where parallel
and sequential constructs require that all their components
be played out or none of them are played. We provide formal
operational semantics for our constructs and show some of
their properties. Although this does not provide security in
a traditional sense, our constructs provide an important as-
pect of security and integrity of surveillance services, thereby
increasing their social credibility and reliability.

SMIL [1] is an XML-like language for authoring multime-
dia documents. Described in more detail in Section 3, it
has media intervals as atomic entities (multimedia display
units) and combine them using operators that enable paral-
lel and sequential playout, conditional playing of multimedia

Figure 1: Motivating Example: Need for Unbreakability

streams and repeating media streams until some condition
is satisfied, etc. Existing model and solutions for text data
based web services do not apply to multimedia as is because
multimedia has a sense of time and continuity that is absent
in the former. Therefore, surveillance and similar multime-
dia services on the semantic web [2] require time and media
continuity sensitive information flow in addition to tradi-
tional secure and trusted two-way communication. How-
ever using traditional SMIL allows improper recombining or
dropping audio, video segments captured by strategically de-
ployed devices that capture live and unfolding scenes. This
is important in the context of surveillance as it does not
prevent chronology re-engineering and fabricating histories,
that can be exploited to produce incriminating evidence. As
shown in the motivating example in figure 1, Bob is trying
to break into a grocery store and his audio and video are
captured by camera A. Sam is an customer in the store,
ignorant of the burglary attempt and his audio and video
are being captured by camera B. Existing SMIL constructs
could allow malicious or inadvertent fabrication by mixing
the video of Bob with the audio of Sam leading to a situation
that incriminates both Bob and Sam together.

Therefore, there is a need to enhance the current SMIL
syntax, and define constructs that disallow this ability as
needed. Such unbreakable synchronization constructs when
used in combination with existing SMIL constructs pro-
vide the flexibility needed to author secure audio-visual data
gathering applications while respecting the intended mean-
ing without permitting malicious mis-interpretation.

The rest of the paper is organized as follows. Section 2 de-
scribes related work and Section 3 briefly introduces SMIL.
Section 4 describes the syntactic additions proposed and
provides their semantics. Section 5 has some properties of
proposed constructs. Section 6 concludes the paper.

2. RELATED WORK
A distributed architecture for multi-participant and in-

teractive multimedia that enables multiple users to share
media streams within a networked environment is presented
in [17]. In this architecture, multimedia streams originat-
ing from multiple sources can be combined to provide media
clips that accommodate look-around capabilities.

Regulating access to XML formatted text documents has
been actively researched in the recent years. Bertino et al.
[3] have developed Author-X, a Java based system to se-
cure XML documents that enforces access control policies
at various granularities and corresponding user credentials.
Author-X encodes security policies for a set of XML docu-
ments in an XML file referred to as the policy base contain-
ing both permissions and prohibitions. Damiani et al. [6, 7]
developed an access control model where the tree structure
of XML documents is exploited using XPATH expressions.
The smallest protection granularity is an XPATH node, and
security policies specify permissions or prohibitions to all
descendent objects of a node.

In the realm of multimedia, substantial amounts of con-
temporary research addresses real-time moving object detec-
tion and tracking them from stationary and moving camera
platforms [18], object pose estimation with respect to a
geospatial site model, human gait analysis [19], recognizing
simple multi-agent activities, real-time data dissemination,
data logging and dynamic scene visualization. Damiani et
al. [5] discuss feature protection of SVG format images. Its
primary focus is controlled dissemination of sensitive data
within an image. They propose an access control model
with complex filtering conditions. Bertino et al. [4] pro-
vides a security framework to model access control in video
databases. They provide security for objects which are se-
quences of frames or particular objects within frames. Their
access control model is based on the concepts of security ob-

jects, subjects, and permitted access modes, like viewing and
editing.

Kodali et al. [10, 13] proposed an MLS application for
secure surveillance of physical facilities , where guards with
different security classification in charge of the physical se-
curity of the building are provided live feeds matching their
level in the security hierarchy. This paper is an extended
version of [9], in which multimedia surveillance is described
with limited operational semantics. Kodali et al. propose
models for multimedia access control for different security
paradigms. A release control for SMIL formatted multi-
media objects for pay-per-view movies on the Internet that
enforces DAC is described in [14]. RDF [16] based security
architectures for multimedia security [12] and authoriza-
tion models for secure digital libraries [8] have also been
proposed. A secure and progressively updatable SMIL doc-
ument [15] is used to enforce RBAC and respond to traffic
emergencies.

3. SMIL: SYNCHRONIZED MULTIMEDIA
INTEGRATION LANGUAGE

SMIL [1] is an extension to XML developed by W3C to
author multimedia presentations with audio, video, text and
images to be integrated and synchronized. The distinguish-
ing features of SMIL over XML are the syntactic constructs
for timing and synchronizing live and stored media streams
with qualitative requirements.

SMIL constructs for synchronizing media are 〈seq〉, 〈excl〉
and 〈par〉. They are used to hierarchically specify synchro-
nized multimedia compositions. Media composed with 〈seq〉
element plays its children one after another in sequence. Me-
dia composed using 〈excl〉 plays all of its components, one
at a time without imposing any order. Media composed
with 〈par〉 plays all components parallely. For example, the
SMIL specification 〈par〉video,src=camera1〉 〈audio, src

= microphone1 〉 〈/par〉 plays camera1 and microphone in
parallel.

In SMIL, the time period that a media clip is played out
is referred to as its active duration. For parallel play out to
be meaningful, both sources must have equal active dura-
tions. When clips do not have equal active durations, SMIL
provides many constructs to equate them. Some examples
are begin (allows to begin components after a given amount
of time), dur (controls the duration), end (specifies the end-
ing time of the component with respect to the whole con-
struct), repeatCount (allows a media clip to be repeated a
maximum number of times). In addition, attributes such
as syncTolerance and syncMaster controls runtime syn-
chronization, where the former specifies the tolerable mis-
synchronization (such as tolerable lip-synchronization de-
lays) and the latter specifies a master-slave relationship be-
tween synchronized streams. In this paper we assume that
children of 〈par〉 have active durations.

4. FORMALIZING SMIL SEMANTICS
Consider the audio and video frame pairs A2, V2 played in

parallel after audio video pairs A1 and A2 as shown in Fig-
ure 2. The lower right hand corner shows two possible SMIL
trees specifying this playout. The constructs 〈par〉 and 〈seq〉
are used by SMIL to specify parallel and sequential playouts
respectively. SMIL uses media intervals beginning and end-
ing at specified times as basic playout elements. Although

specified using XML-like syntax, SMIL trees do not con-
vey the informal runtime semantics intended of multimedia
synchronization. In order to precisely specify them [11, 12]
formalized a semantics for SMIL trees using media intervals.
Naturally, in that semantics any media presentation can be
specified as a parallel playout of sequence of media frames.
This can also be achieved using SMIL syntax, referred ro as
the normal form of a SMIL specification. [11, 12] provides
some basic algebraic identities that can be used to rewrite a
SMIL tree into its normal form. We now recall these defini-
tions. First, we formalize the semantics.

Definition 1 (Timed Display Instance and Sets). We
say that a triple (type, tbegin, tend) is a timed display

instance (TDI) provided that:

1. type is the name of a media type such as audio, video,
tbegin ≤ tend are arithmetic expressions of a single real
number variable t satisfying tend = tbegin + δ.

2. A set of timed display instances is said to be a timed
display set (TDS) parameterized by t provided that at
least one timed display element begins at t.

3. Taken as arithmetic expressions containing the vari-
able t, the smallest tbegin value of a timed display set
is said to be the origin of the timed display set. We
use the notation O(TDS) for the origin of the timed dis-
play set TDI. The largest tend value of a timed display
set is said to be the end of the timed display set. We
use the notation E(TDS) for the end of the timed dis-
play set TDS.

The following representations tdi1 = (video,t,t+7)and tdi2
= (audio,t+7,t+17) are examples of timed display instances.

Definition 2 (Time Shift Operator). Suppose TDS is a
timed display set parameterized t and s. Then TDS(s/t) is
the timed display set obtained by syntactically substituting s

for t.

For the example given before 2, TDS(2t+7/t) consists of
{tdi1(2t+7/t), tdi2(2t+7/t)} where tdi1(2t+7/t) = (video,
2t+7, 2t+21) and tdi2(2t+7/t) = (audio,2t+21,2t+31). We
now use these basic notations to formalize semantics map-
ping of SMIL specifications.

Definition 3 (Basis Mapping). Suppose M is the set of
basic media elements of any SMIL specification. A mapping
[[]]: M �→ TDS is a basis iff all T-begin values of M have
the same value t. Then we say that [[]] is a basis mapping
parameterized by t.

Lemma 1 (Existence of basis mappings). Suppose M
is a set of basic media streams with time durations. Then M
has a basis mapping.

The proof is given in [11, 12]. We now use a basis mapping
to define operational semantics of any SMIL specification as
follows.

Definition 4 (Operational Semantics for SMIL). Sup-
pose S is a SMIL specification and [[]] is a basis mapping for
the atomic media intervals B of S with the formal parameter
t. Then we inductively extend [[]] to S as follows.

1. [[Null]] = Φ

V1

A2

V2

AUDIO Frames

VIDEO Frames

A1

(a)

<PAR><SEQ> <PAR>

<SEQ> <SEQ>

<PAR>

<SEQ> <SEQ>

Unbreakbale <seq> and <par> Constructs

Complete <par> respresenation of Unbreakable Condtructs.

<seq>[V1 V2]</seq> else NULL.

<par>[A1 V1]</par> else NULL.

[V1 V2] [A1 V1]

[A1 A2][V1V2][A1V2][A2V1]

Figure 2: Unbreakable SMIL Constructs

2. [[〈seq〉S1S2〈/seq〉]] = [[S1]] ∪ [[S2]](end([[S1]])/t)

3. [[〈par〉S1S2〈/par〉]] = [[S1]] ∪ [[S2]].

We say that [[]] is a semantic mapping parameterized by
t. The stated informal notion of meaning is captured by our
operational semantics. Under this mapping, any SMIL tree
is mapped to a time display set - namely to the set of atomic
media intervals with precise offsets with respect to an origin
t. The mapping [[]] lists the set of all possible media in-
tervals, among which all, some or neither may be displayed.
But for the unbreakable synchronization constructs the sec-
ond possibility is forbidden - and therefore the set of all
permissible possibilities have to be explicitly listed. Conse-
quently, we need to replace all time display sequences with
explicitly permissible sets of them. For example consider
playing A1 and V1 of Figure 2 unbreakably using a 〈par〉
construct. Then the only two combinations that are allowed
to be played are {∅}, {(audio, tbegin(A1), tend(A1)),
(video, tbegin(V 1), tend(V 1))}. The other two options of play-
ing A1 without V1 or V1 without A2 are prohibited.

We use Upar and Useq as names for unbreakable parallel
and sequential composition of media streams. In our new
semantics, two streams are connected by a 〈Upar〉 if they be-
gin and end playout at the same time and are always played
as a inseparable group(enclosed by a dotted line in Figure
2). Similarly, two streams are connected by a 〈Useq〉 if the
second mandatorily begins when the first ends and either
both streams are played as an inseparable group(enclosed
by a dashed line in Figure 2 in sequence or none of them
are played. A representation using the proposed constructs
shown in part c of Figure 2 is 〈Useq〉〈Upar〉[A1, V1] 〈/Upar〉
〈Upar〉[A2, V2]〈/Upar〉〈/Useq〉. We now show the semantic
enhancements necessary to enforce unbreakability.

4.1 Semantics of Unbreakability

Definition 5 (Unbreakable Time Display Instance).
We say that a quadruple (type,tbegin , tend,index) is an
unbreakable timed display instance (UTDI) provided that:

1. type is audio, video or a name of a basic media type
and tbegin ≤ tend are arithmetic expressions of a single
real variable t.

2. index is a positive integer.

3. We say that a set of unbreakable timed display in-
stances is an unbreakable timed display set (UTDS)

provided that there is at least one timed display element
with t as its tbegin value, and the set of indices in the
elements form an interval [1, n] for some integer n.

4. Taken as arithmetic expressions containing the vari-
able t, the smallest tbegin value of a timed display set
is said to be the origin of the timed display set. We
use the notation O(UTDS) for the origin of the timed
display set UTDS. The largest tend value of a timed dis-
play set is said to be the end of the timed display set.
We use the notation E(UTDS) for the end of the un-
breakable timed display set UTDS.

There are two major differences between timed display
sequences of given in definitions 1 and 5. The first does
not have an index as the fourth coordinate of a time dis-
play instance, but the latter does. It is used in the latter
to identify two instances of the same media interval. For
example < par > tdi1, tdi1 < /par > constitutes playing
the same media interval in parallel. By having two indices
to separate these two instances we can distinguish tdi1 from
< par > tdi1, tdi1 < /par > as the former maps to {∅,
{(audio, tbegin, tend, 1)}} and the latter maps to {∅, {(audio,
tbegin, tend, 1)}, {(audio, tbegin, tend, 2)}}. Notice that with-
out distinct indices, both these sets become the same.

The second difference is that definition 1 has sets of time
display sequences for timed display sets and definition 5 uses
sets of sets of unbreakable timed display sequences for the
same. The need for the extra level of set embedding is nec-
essary to group the unbreakable combinations together in
the latter as that was not a modelling requirement of the
former.

The following representations tdi1=(video,t,t+7,1) and
tdi2=(audio,t+7,t+17,2) are examples of unbreakable timed
display instances. Consequently, {∅, {tdi1}, {tdi2}, {tdi1, tdi2}}
is an unbreakable time display set denoting that one, both or
neither of tdi1,tdi2 can be played. Similarly, {∅, {tdi1, tdi2}}
is another time display set denoting that either both nor nei-
ther of tdi1, tdi2 are played. As explained, the difference is

type = "video" , index = 2

type = "video" , index = 2type = "audio", index = 1 type = "audio", index = 1

<seq>[audio, t, t+x, 1], shift−index shift−time [video, t+x, (t+x)+y, 2</seq> else NULL.

<par> [audio, t, t+x, 1], shift−index [video, t+x, (t+x)+y, 2</par> else NULL.

type = "audio", index = 1

, index = 2type = "video"

type = "audio", index = 1

type = "video", index = 2

<PAR>
<SEQ>

(b)(a)
Unbreakable <par> and <seq> Constructs

Figure 3: Unbreakable Synchronization Constructs

the semantic dichotomy between a breakable sequential con-
struct and its unbreakable counterpart.

Now we describe an algebraic operation on timed display
sets required to define our operational semantics of break-
able and unbreakable SMIL constructs. The first is that of
index shift operation on TDI sets defined as follows.

Definition 6 (Index Shift). Define

1. Ishift(k, (type, tbegin, tend, index)) = (type, tbegin, tend,
k + index)

2. Ishift(k, UTDS) = {Ishift(k, UTDI) | UTDI ∈ UTDS}

The index shift operation is necessary because definition 5
requires the set of indices of a UTDI set to be a closed inter-
val. Thus, preserving this property across synchronization
constructs require reassigning indices of some timed display
instances, as will be seen shortly. First we redefine a basis
mapping.

Definition 7 (Parameterized u-Basis Mapping). Sup-
pose B(C) is the set of atomic media intervals used in a
collection C of SMIL constructs. Any mapping [] : B(C) �→
UT DI from B(C) to a set of timed display instances UT DI
is said to be a u-basis (unbreakable basis) mapping param-
eterized by t iff all tbegin elements of B(C) have the same
value t for some real variable.

Again the following can be easily shown.

Lemma 2 (Existence of basis Mappings). Every set of
atomic media streams B(C) with time duration has a basis
mapping that preserves the beginning and end times.

The proof is the same as the previous case. We now use
the basis mapping to formalize the meaning of the enhance-
ments proposed for SMIL unbreakability. We now use these
basis mappings to formally define an operational semantics
of extended uSMIL.

Definition 8 (Semantics of uSMIL Constructs). Sup-
pose C is a collection of uSMIL constructs and [] is a u-basis
mapping from B(C) to some timed display set UT DS. Then
we extend [] to C as follows.

1. [〈par〉S1S2〈/par〉] = {∅}∪[S1]∪Ishift(size(S1), [S2])∪
{P∪Ishift(size(S1), Q)|P ∈ [S1], Q ∈ [S2]}.

2. [〈seq〉S1S2〈/seq〉] =
{∅}∪[S1]∪Ishift(size(S1, [S2](E(S1/t))))
∪{P∪Ishift(size(S1, Q(E(S1/t))))|P ∈ [S1], Q ∈ [S2]}

3. [〈Upar〉S1S2〈/Upar〉] = {∅}∪[S1]∪Ishift(size(S1), [S2])

4. [〈Useq〉S1S2〈/Useq〉] =
{∅}∪[S1]∪Ishift(size(S1), [S2](E(S1/t)))

As stated in definition 8, already known SMIL operators
seq and par list all possible combinations of sets from both
components that are conjoined by the construct. Conversely,
the unbreakable constructs Useq and Upar either allow only
the combination without being able to break them into con-
stituents. As seen from definition 8, the only extra part in
par that is absent from Upar is {P∪Ishift(size(S1), Q)|P ∈
[S1], Q ∈ [S2]}. Notice that P and Q are any UTDI’s in [S1]
and [S2] respectively, and this extra set shifts the index of
Q and plays them in parallel. Consequently, if P is the
null UTDI (indicating silence) then it plays out only Q and
vice-versa. A similar contrast exists between seq and Useq.

As shown in part (a) of Figure 3 〈Upar〉(audio, tbegin, tend, 1),
(video, tbegin, tend, 2)〈/par〉, either plays both audio and the
video components together (i.e. begins and ends at the same
time) or neither (i.e. resulting in silence). Similarly, as
shown in part (b) of Figure 3 〈Useq〉(audio, tbegin, tend, 1),
(video, tbegin, tend, 2)〈/par〉, either plays both audio and the
video components in that order or plays neither of them
resulting in a long silence in both streams.

As stated earlier, the only reason for having an index in
the definition of UTDI’s is (i.e. given in Definition 5 as
(type, tbegin, tend, index)) is to ensure that two copies are
not identified as sets. Thus the particular value of the index
does not add any extra information to the semantics. Con-
sequently, we consider all semantic mappings that differ in
the indexing to be equivalent, and take the equivalence class
as the meaning, formalized as follows.

Definition 9 (Equivalence index reindexing). We say
that [A] ∼= [B] iff there is a bijection f : IA → IB such that
[B] = {(type, tbegin, tend, f(i)): i ∈ IA), (type, tbegin, tend,
i) ∈ [A]}

USEQ

PAR UPAR

USEQ USEQ

<PAR>

UPAR UPAR

<SEQ>

UPAR UPAR

USEQ USEQ

SEQ

UPAR

USEQ

S1 S2 S3 S4 S1 S3 S4 S2 S3 S4

S4S3S2S1
S1 S3 S4 S3 S4S2

Figure 4: Parallel and Sequential Reducibility: Unbreakable Parent

PAR UPAR

<PAR>

UPAR UPAR

<SEQ>

USEQ USEQ

SEQ USEQ

 SEQ

SEQ SEQ

 PAR

 PAR PAR

S1

S1 S2
S3 S4

S2 S3 S4 S4S3S2S4S3S1

S1 S2S4S3 S3 S4

Figure 5: Parallel and Sequential Reducibility : Breakable Parent

Lemma 3 (Existence of an Equivalence Class). ∼= is
an equivalence relation on semantic maps [] from C to
UT DI.

It is trivial to verify that ∼= is an equivalence class. Using
this equivalence relation, we now define the semantic map
as follows.

Definition 10 (Semantics of uSMIL). Let [[A]] = [A]/∼=.
We say that for any uSMIL specification tree S, [[S]] is its
operational semantics.

5. ALGEBRA OF UNBREAKABILITY - SOME
PRELIMINARY RESULTS

Synchronization constructs par, seq satisfy the following
properties.

1. [〈par〉S1S2〈/par〉] = [〈par〉S2S1〈/par〉]

2. [(〈par〉S1S2〈/par〉)(〈par〉S3〈/par〉)] =
[(〈par〉S1〈/par〉)(〈par〉S2S3〈/par〉)]

3. The identity (〈seq〉S1S2〈/seq〉) = (〈seq〉S2S1〈 /seq〉)
does not always hold.

4. [(〈seq〉S1S2〈/seq〉)(〈seq〉S3〈/seq〉)] =
[(〈seq〉S1〈/seq〉)(〈seq〉S2S3〈/seq〉)]

5. The identity [〈par〉S1S1〈/par〉] = [S1] does not always
hold.

6. The identity [〈seq〉S1S1〈/seq〉] = [S1] does not always
hold.

Synchronization constructs Upar and Useq satisfy the fol-
lowing properties.

1. [(〈Useq〉(〈par〉S1S2〈/par〉)(〈Upar〉S3S4〈/Upar〉)
〈/Useq〉)] = [(〈par〉(〈Useq〉S1(〈Upar〉S3S4〈/Upar〉)
〈/Useq〉)(〈Useq〉S2(〈Upar〉S3S4〈/Upar〉)〈/Useq〉)〈/par〉)]

2. [(〈Upar〉(〈seq〉S1S2〈/seq〉)(〈Useq〉S3S4〈/Useq〉)
〈/Upar〉)] = [(〈seq〉(〈Upar〉S1(〈Useq〉S3S4〈/Useq〉)
〈/Upar〉)(〈Upar〉S2(〈Useq〉S3S4〈/Useq〉)〈/Upar〉)〈/seq〉)]

3. [(〈seq〉(〈par〉S1S2〈/par〉)(〈Upar〉S3S4〈/Upar〉)
〈/seq〉)] = [(〈par〉(〈seq〉S1(〈Upar〉S3S4〈/Upar〉)
〈/seq〉)(〈seq〉S2(〈Upar〉S3S4〈/Upar〉)〈/seq〉)〈/par〉)]

4. [(〈par〉(〈seq〉S1S2〈/seq〉)(〈Useq〉S3S4〈/Useq〉)
〈/par〉)] = [(〈seq〉(〈par〉S1(〈Useq〉S3S4〈/Useq〉)
〈/par〉)(〈par〉S2(〈Useq〉S3S4〈/Useq〉)〈/par〉)〈/seq〉)]

Figures 4 and 5 show the breakable parallel construct
(〈par〉S1S2〈/par〉) and an unbreakable parallel construct
(〈Upar〉S3S4〈/Upar〉) where S1, S2, S3, S4 are timed display
instances representable as quadruples (type,tbegin, tend,index)
and synchronized by either 〈seq〉 or 〈Useq〉, and the tree
obtained as a result of the rewriting the the SMIL tree
according to the stated properties . Additionally, the fig-
ures 4 and 5 also show the breakable sequential construct

(〈seq〉S1S2〈/seq〉) and the unbreakable sequential construct
(〈Useq〉S3S4〈/Useq〉) synchronized by either 〈 par〉 or 〈Upar〉,
and the tree obtained as a result of the rewrite. The intended
meaning is represented by all maintained during the rewrite.
These properties would eventually enable us to normalize ar-
bitrary SMIL trees containing both breakable and unbreak-
able timed display instances to an atomic form, which would
be the Unbreakable Normal form. The proofs of the stated
properties for breakable and unbreakable parents are given
in the Appendix.

6. CONCLUSIONS
Due to the need to enforce the condition that some col-

lections of media streams should be played in all or noth-
ing fashion, we introduced unbreakable synchronization con-
structs to SMIL. We then showed how to extend the opera-
tional semantics of SMIL to that of uSMIL - SMIL with un-
breakable synchronization constructs. We also showed that
uSMIL satisfies some algebraic properties. Our objectives
in exploring these are to find a syntactic representation of
the uSMIL semantics in the form of a normal form and find
a set of tree transformations that can be used to reduce any
SMIL document to its normal form.

7. REFERENCES
[1] J. Ayars. Synchronized Multimedia Integration

Language. W3C Recommendation, 2001.
http://www.w3.org/TR/2001/REC-smil20-20010807.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. The Scientific American Journal, 2001.

[3] E. Bertino, M. Braun, S. Castano, E. Ferrari, and
M. Mesiti. Author-x: A java-based system for XML
data protection. In IFIP Workshop on Database
Security, pages 15–26, 2000.

[4] E. Bertino, M. Hammad, W. Aref, and
A. Elmagarmid. An access control model for video
database systems. In Conferece on Information and
Knowledge Management, 2002.

[5] E. Damiani and S. D. C. di Vimercati. Securing xml
based multimedia content. In 18th IFIP International
Information Security Conference, 2003.

[6] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati. Securing XML documents. Lecture Notes
in Computer Science, 1777:121–122, 2000.

[7] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati. A fine grained access control system for
xml documents. ACM Transactions on Information
and System Security, 5, 2002.

[8] N. Kodali, C. Farkas, and D. Wijesekera. An
authorization model for multimedia digital libraries.
In Journal of Digital Libraries Special issue on
Security, 2003.

[9] N. Kodali, C. Farkas, and D. Wijesekera. Enforcing
integrity in multimedia surveillance. In IFIP 11.5
Working Conference on Integrity and Internal Control
in Information Systems, 2003.

[10] N. Kodali, C. Farkas, and D. Wijesekera. Enforcing
semantic-aware security in multimedia surveillance. In
Journal of Data Semantics, 2003.

[11] N. Kodali, C. Farkas, and D. Wijesekera. Metadata for
multimedia access control. In International Journal of
Computer Systems, Science, and Engineering, 2003.

[12] N. Kodali, C. Farkas, and D. Wijesekera. Multimedia
access contol using RDF metadata. In Workshop on
Metadata for Security, WMS 03, 2003.

[13] N. Kodali, C. Farkas, and D. Wijesekera. Secrets: A
secure realtime emergency response system. In
NSF/NIJ 2nd Symposium on Intelligence and Security
Informatics, 2003.

[14] N. Kodali and D. Wijesekera. Regulating access to
SMIL formatted pay-per-view movies. In 2002 ACM
Workshop on XML Security, 2002.

[15] N. Kodali, D. Wijesekera, and J.B.Michael.
SPUTERS: a secure traffic surveillance and emergency
response architecture. In submission to the Journal of
Intelligent Transportaion Systems, 2003.

[16] F. Manola and E. Miller. RDF Primer. W3C Working
Draft, January 23 2003.
http://www.w3.org/TR/2003/WD-rdf-primer-
20030123.

[17] B. K. Schmidt. An architecture for distributed,
interactive, multi-stream, multi-participant audio and
video. In Technical Report No CSL-TR-99-781,
Stanford Computer Science Department, 1999.

[18] M. VCMS. Field data collection system
http://www.acrcorp.com.

[19] VSAM. Video surveilance and monitoring webpage at
http://www-2.cs.cmu.edu/ vsam/.

APPENDIX

A. PROOFS OF THE PROPERTIES

A.1 Properties of Reducibility - Unbreakable
Parent

Lemma 4 (Parallel Reducibility - Unbreakable Par-
ent).

[(〈Useq〉(〈par〉S1S2〈/par〉)(〈Upar〉S3S4〈/Upar〉)
〈/Useq〉)] = [(〈/par〉(〈Useq〉S1(〈Upar〉S3S4〈/Upar〉)
〈/Useq〉)(〈Useq〉S2(〈Upar〉S3S4〈/Upar〉)〈/Useq〉)〈/par〉)]

Proof:
Rewriting the LHS

[(〈par〉S1S2〈/par〉)] = {∅} ∪[S1]∪Ishift(size(S1), [S2])
∪ {P∪Ishift(size(S1), Q)|P ∈ [S1], Q ∈ [S2]}

= {{∅}, {(type, tbegin, tend, indexS1) ∪ Ishift(size(S1)),
(type, tbegin, tend, indexS2)}, {(type, tbegin, tend, indexS1

)}, {(type , tbegin, tend, indexS2)}}
[(〈Upar〉S3S4〈/Upar〉)] = {∅}∪[S3]∪Ishift(size(S3), [S4])

= {{∅}, {(type, tbegin, tend, indexS3) ∪ Ishift(size(S3)),
(type, tbegin, tend, indexS4)}}

Therefore,

[(〈Useq〉(〈par〉S1S2〈/par〉)(〈Upar〉S3S4〈/Upar〉)
〈/Useq〉)]

= {{∅}, {(type, tbegin, tend, indexS1), Ishift (size(S1))(type,
tbegin, tend, indexS3) Ishift (size(S3))(type, tbegin, tend,
indexS4)} E (type, tbegin, tend, indexS1)/t}, {{∅}, {(type,
tbegin, tend, indexS2), Ishift(size(S2)) (type, tbegin, tend,

indexS3) Ishift(size(S3))(type, tbegin, tend, indexS4)} E
(type, tbegin, tend, indexS2)/t}, {(type, tbegin, tend, indexS1)
∪ Ishift (size(S1)), (type, tbegin, tend, indexS2) Ishift (size(S1,
S2)) (type, tbegin, tend, indexS3) ∪ Ishift(size(S3)), (type,
tbegin, tend, indexS4) E((type, tbegin, tend, indexS1) ∪
Ishift (size(S1)), (type, tbegin, tend, indexS2))}

Now consider the RHS

[(〈/par〉(〈Useq〉S1(〈Upar〉S3S4〈/Upar〉)
〈/Useq〉)(〈Useq〉S2(〈Upar〉S3S4〈/Upar〉)〈/Useq〉)〈/par〉)].

By definition
[(〈Upar〉S3S4〈/Upar〉)] =
{∅}∪[S3]∪Ishift(size(S3), [S4])
[(〈Useq〉S1(〈Upar〉S3S4〈/Upar〉)〈/Useq〉)]

= {{∅}, (type, tbegin, tend, indexS1) ∪ Ishift(size(S1))
(type, tbegin, tend, indexS3) Ishift(size(S3)) (type, tbegin,
tend, indexS4) E (type, tbegin, tend, indexS1)/t}
[(〈Useq〉S2(〈Upar〉S3S4〈/Upar〉)〈/Useq〉)]

= {{∅}, (type, tbegin, tend, indexS2) ∪ Ishift(size(S1))
(type, tbegin, tend, indexS3) Ishift(size(S3)) (type, tbegin,
tend, indexS4) E (type, tbegin, tend, indexS2)/t}

Combining the above results we get

{{∅}, {(type, tbegin, tend, indexS1), Ishift (size(S1)) (type,
tbegin, tend, indexS3) Ishift(size(S3))(type, tbegin, tend, indexS4

)} E (type, tbegin, tend, indexS1)/t}, {{∅}, {(type, tbegin,
tend, indexS2), Ishift (size(S2)) (type, tbegin, tend, indexS3

) Ishift (size(S3))(type, tbegin, tend, indexS4)} E (type,
tbegin, tend, indexS2)/t}, {(type, tbegin, tend, indexS1) ∪
Ishift (size(S1)), (type, tbegin, tend, indexS2) Ishift (size(S1,
S2)) (type, tbegin, tend, indexS3) ∪ Ishift (size(S3)), (type,
tbegin, tend, indexS4) E((type, tbegin, tend, indexS1) ∪
Ishift(size(S1)), (type, tbegin, tend, indexS2))}

Hence LHS = RHS , proving

[(〈Useq〉(〈par〉S1S2〈/par〉)(〈Upar〉S3S4〈/Upar〉)
〈/Useq〉)] = [(〈/par〉(〈Useq〉S1(〈Upar〉S3S4〈/Upar〉)
〈/Useq〉)(〈Useq〉S2(〈Upar〉S3S4〈/Upar〉)〈/Useq〉)〈/par〉)]

Lemma 5 (Sequential Reducibility - Unbreakable Par-
ent). [(〈Upar〉(〈seq〉S1S2〈/seq〉)(〈Useq〉S3S4〈/Useq〉)
〈/Upar〉)] = [(〈/seq〉(〈Upar〉S1(〈Useq〉S3S4〈/Useq〉)
〈/Upar〉)(〈Upar〉S2(〈Useq〉S3S4〈/Useq〉)〈/Upar〉)〈/seq〉)]

Proof:
Rewriting the LHS

[(〈seq〉S1S2〈/par〉)] = {∅}∪[S1]∪Ishift(size(S1, [S2](E(S1/t))))
∪{P∪Ishift(size(S1, Q(E(S1/t))))|P ∈ [S1], Q ∈ [S2]}

= {{∅}, {(type, tbegin, tend, indexS1)}, {(type, tbegin,
tend, indexS1)∪ Ishift(size(S1)) (type, tbegin, tend, indexS2

) E((type, tbegin, tend, indexS1)/t)}, Ishift(size(S1)) (type
, tbegin, tend, indexS2)}}
[(〈Useq〉S3S4〈/Useq〉)] =
{∅}∪[S3]∪Ishift(size(S3, [S4](E(S3/t))))

= {{∅}, {(type, tbegin, tend, indexS3) ∪ Ishift(size(S3))(type,
tbegin, tend, indexS4)}

Therefore,

[(〈Upar〉(〈seq〉S1S2〈/seq〉)(〈Useq〉S3S4〈/Useq〉)
〈/Upar〉)]

= {{∅}, {(type, tbegin, tend, indexS1), Ishift(size(S1))
(type, tbegin, tend, indexS3) Ishift(size(S3))(type, tbegin, tend,
indexS4)} E (type, tbegin, tend, indexS1)/t}, {(type, tbegin,
tend, indexS2), Ishift(size(S2)) (type, tbegin, tend, indexS3)
Ishift(size(S3))(type, tbegin, tend, indexS4)} E (type, tbegin,
tend, indexS2)/t}, {(type, tbegin, tend, indexS1) ∪
Ishift(size(S1)), (type, tbegin, tend, indexS2)Ishift(size(S1,
S2))(type, tbegin, tend, indexS3) ∪ Ishift(size(S3)), (type,
tbegin, tend, indexS4) E((type, tbegin, tend, indexS1) ∪ Ishift
(size(S1)), (type, tbegin, tend, indexS2))}

Now consider the RHS

[(〈/seq〉(〈Upar〉S1(〈Useq〉S3S4〈/Useq〉)
〈/Upar〉)(〈Upar〉S2(〈Useq〉S3S4〈/Useq〉)〈/Upar〉)〈/seq〉)]
[(〈Useq〉S3S4〈/Useq〉)] =
{∅}∪[S3]∪Ishift(size(S3, [S4](E(S3/t))))

[(〈Upar〉S1(〈Useq〉S3S4〈/Useq〉)〈/Upar〉)]

= {{∅}, {(type, tbegin, tend, indexS1) ∪ Ishift(size(S1))
(type, tbegin, tend, indexS3) Ishift(size(S3)) (type, tbegin,
tend, indexS4) E (type, tbegin, tend, indexS1)/t}}
[(〈Upar〉S2(〈Useq〉S3S4〈/Useq〉)〈/Upar〉)]

= {{∅}, {(type, tbegin, tend, indexS2) ∪ Ishift(size(S1))
(type, tbegin, tend, indexS3) Ishift(size(S3)) (type, tbegin,
tend, indexS4) E (type, tbegin, tend, indexS2)/t}

Combining the above results we get

{{∅}, {(type, tbegin, tend, indexS1), Ishift(size(S1)) (type,
tbegin, tend, indexS3) Ishift(size(S3)) (type, tbegin, tend,
indexS4)} E (type, tbegin, tend, indexS1)/t}, {(type, tbegin,
tend, indexS2), Ishift(size(S2)) (type, tbegin, tend, indexS3)
Ishift(size(S3))(type, tbegin, tend, indexS4)} E (type, tbegin,
tend, indexS2)/t}, {(type, tbegin, tend, indexS1) ∪
Ishift(size(S1)), (type, tbegin, tend, indexS2)Ishift(size(S1, S2))
(type, tbegin, tend, indexS3) ∪ Ishift(size(S3)), (type, tbegin,
tend, indexS4) E((type, tbegin, tend, indexS1) ∪ Ishift(size(S1)),
(type, tbegin, tend, indexS2))}

Hence LHS = RHS , proving

[(〈Upar〉(〈seq〉S1S2〈/seq〉)(〈Useq〉S3S4〈/Useq〉)
〈/Upar〉)] = [(〈/seq〉(〈Upar〉S1(〈Useq〉S3S4〈/Useq〉)
〈/Upar〉)(〈Upar〉S2(〈Useq〉S3S4〈/Useq〉)〈/Upar〉)〈/seq〉)]

A.2 Properties of Reducibility - Breakable
Parent

Lemma 6 (Parallel Reducibility - Breakable Parent).
[(〈seq〉(〈par〉S1S2〈/par〉)(〈Upar〉S3S4〈/Upar〉)
〈/seq〉)] = [(〈/par〉(〈seq〉S1(〈Upar〉S3S4〈/Upar〉)
〈/seq〉)(〈seq〉S2(〈Upar〉S3S4〈/Upar〉)〈/seq〉)〈/par〉)]

Proof: Rewriting the LHS

[(〈par〉S1S2〈/par〉)] = {∅}∪[S1]∪Ishift(size(S1), [S2])∪
{P∪Ishift(size(S1), Q)|P ∈ [S1], Q ∈ [S2]}.

= {{∅}, {(type, tbegin, tend, indexS1) ∪ Ishift(size(S1)),
(type, tbegin, tend, indexS2)}, {(type, tbegin, tend, indexS1

)}, {(type , tbegin, tend, indexS2)}}
[(〈Upar〉S3S4〈/Upar〉)] =
{∅}∪[S3]∪Ishift(size(S3), [S4])

= {{∅}, {(type, tbegin, tend, indexS3) ∪ Ishift(size(S3)),
(type, tbegin, tend, indexS4)}}

Therefore,
[(〈seq〉(〈par〉S1S2〈/par〉)(〈Upar〉S3S4〈/Upar〉)
〈/seq〉)]

= {{∅}, { (type, tbegin, tend, indexS1)}, { (type, tbegin,
tend, indexS2)}, {(type, tbegin, tend, indexa) ∪ Ishift (size(S1))
(type, tbegin, tend, indexa)} {(type, tbegin, tend, indexS1

) ∪ Ishift (size(S1)) (type, tbegin, tend, indexS3) ∪ Ishift
(size(S3)) (type, tbegin, tend, indexS4)(E (type, tbegin, tend,

indexS1) �)} {(type, tbegin, tend, indexS2) ∪ Ishift (size(S2))
(type, tbegin, tend, indexS3) ∪ Ishift(size(S3)) (type, tbegin,

tend, indexS4)(E (type, tbegin, tend, indexS2)�)} {(type, tbegin,
tend, indexS1) ∪ Ishift(size(S1)) (type, tbegin, tend, indexS3)
∪ Ishift (size(S3)), (type, tbegin, tend, indexS4) (E (type,
tbegin, tend, indexS1))∪ (type, tbegin, tend, indexS2) ∪
Ishift(size(S2))(type, tbegin, tend, indexS3) ∪ Ishift(size(S3))
(type, tbegin, tend, indexS4) (E (type, tbegin, tend, indexS2

))}}

Now consider the RHS

[(〈/par〉(〈seq〉S1(〈Upar〉S3S4〈/Upar〉)
〈/seq〉)(〈seq〉S2(〈Upar〉S3S4〈/Upar〉)〈/seq〉)〈/par〉)]

We resolve
(〈/par〉(〈seq〉S1(〈Upar〉S3S4〈/Upar〉)
〈/seq〉) and
(〈/par〉(〈seq〉S2(〈Upar〉S3S4〈/Upar〉)
〈/seq〉)
separately and than 〈par〉 the result sets.

(〈/par〉(〈seq〉S1(〈Upar〉S3S4〈/Upar〉)
〈/seq〉)

= {{∅}, (type, tbegin, tend, indexS1) Ishift(size(S1))(type,
tbegin, tend, indexS3) ∪ Ishift(size(S3)) (type, tbegin, tend,

indexS4) (E (type, tbegin, tend, indexS1
�))}

(〈/par〉(〈seq〉S2(〈Upar〉S3S4〈/Upar〉)
〈/seq〉)

= {{∅}, (type, tbegin, tend, indexS2) Ishift(size(S1))(type,
tbegin, tend, indexS3) ∪ Ishift(size(S3)) (type, tbegin, tend,

indexS4) (E (type, tbegin, tend, indexb
�))}

Combining the above results we get

[(〈/par〉(〈seq〉S1(〈Upar〉S3S4〈/Upar〉)
〈/seq〉)(〈seq〉S2(〈Upar〉S3S4〈/Upar〉)〈/seq〉)〈/par〉)]

= {{∅}, { (type, tbegin, tend, indexS1)}, { (type, tbegin,

tend, indexS2)}, {(type, tbegin, tend, indexa) ∪ Ishift(size(S1))
(type, tbegin, tend, indexa)} {(type, tbegin, tend, indexS1) ∪
Ishift (size(S1)) (type, tbegin, tend, indexS3) ∪ Ishift(size(S3))
(type, tbegin, tend, indexS4)(E (type, tbegin, tend, indexS1)
�)} {(type, tbegin, tend, indexS2) ∪ Ishift (size(S2)) (type,
tbegin, tend, indexS3) ∪ Ishift(size(S3)) (type, tbegin, tend,

indexS4) (E (type, tbegin, tend, indexS2)�)}{(type, tbegin,
tend, indexS1) ∪ Ishift (size(S1)) (type, tbegin, tend, indexS3)
∪ Ishift (size(S3)), (type, tbegin, tend, indexS4) (E (type,
tbegin, tend, indexS1)) ∪ (type, tbegin, tend, indexS2) ∪
Ishift(size(S2)) (type, tbegin, tend, indexS3) ∪ Ishift (size(S3))
(type, tbegin, tend, indexS4) (E (type, tbegin, tend, indexS2

))}}

Hence LHS = RHS , proving

[(〈seq〉(〈par〉S1S2〈/par〉)(〈Upar〉S3S4〈/Upar〉)
〈/seq〉)] = [(〈/par〉(〈seq〉S1(〈Upar〉S3S4〈/Upar〉)
〈/seq〉)(〈seq〉S2(〈Upar〉S3S4〈/Upar〉)〈/seq〉)〈/par〉)]
Lemma 7 (Sequential Reducibility - Breakable Par-
ent). [(〈par〉(〈seq〉S1S2〈/seq〉)(〈Useq〉S3S4〈/Useq〉)
〈/par〉)] = [(〈/seq〉(〈par〉S1(〈Useq〉S3S4〈/Useq〉)
〈/par〉)(〈par〉S2(〈Useq〉S3S4〈/Useq〉)〈/par〉)〈/seq〉)]

Proof:
Rewriting the LHS

[〈seq〉S1S2〈/seq〉] = [〈seq〉S1S2〈/seq〉] =
{∅}∪[S1]∪Ishift(size(S1, [S2](E(S1/t))))
∪{P∪Ishift(size(S1, Q(E(S1/t))))|P ∈ [S1], Q ∈ [S2]}

= {{∅}, { (type, tbegin, tend, indexS1)}, {Ishift (size(S1))
(type , tbegin, tend, indexb)} {(type, tbegin, tend, indexS1

) Ishift (size(S1)) (type , tbegin, tend, indexS2) (E (type,
tbegin, tend, indexS1))}}

[〈Useq〉S3S4〈/Useq〉] =
{∅}∪[S3]∪Ishift(size(S3, [S4](E(S3/t))))

= {{∅}, {(type, tbegin, tend, indexS3) ∪ Ishift(size(S3))(type,

tbegin, tend, indexS4) E((type, tbegin, tend, indexS3)
�)}}

Therefore,

[(〈par〉(〈seq〉S1S2〈/seq〉)(〈Useq〉S3S4〈/Useq〉)
〈/par〉)]

= {{∅}, {(type, tbegin, tend, indexS1)} {Ishift (size(S1))
(type , tbegin, tend, indexb)} {(type, tbegin, tend, indexS1)
Ishift (size(S1)) (type , tbegin, tend, indexb)(E (type, tbegin,
tend, indexS1))} {(type, tbegin, tend, indexS3) ∪ Ishift(size(S3))

(type, tbegin, tend, indexS4) (E (type, tbegin, tend, indexS3)
�)}}

{(type, tbegin, tend, indexS1) Ishift(size(S1)) (type, tbegin,
tend, indexS3) ∪ Ishift(size(S3)) (type, tbegin, tend, indexS4)

E((type, tbegin, tend, indexS3)
�) (E (type, tbegin, tend, indexS1

))} {(type, tbegin, tend, indexS2) Ishift(size(S2)) (type,
tbegin, tend, indexS3) ∪ Ishift(size(S3)) (type, tbegin, tend,

indexS4) E((type, tbegin, tend, indexS3)
�) (E (type, tbegin,

tend, indexS2))} {(type, tbegin, tend, indexS1)Ishift(size(S1))
(type, tbegin, tend, indexS3) ∪ Ishift(size(S3))(type, tbegin,

tend, indexS4) E((type, tbegin, tend, indexS3)
�)(E (type, tbegin,

tend, indexS1)) ∪ (type, tbegin, tend, indexS2)Ishift(size(S2))
(type, tbegin, tend, indexS3) ∪ Ishift(size(S3))(type, tbegin,

tend, indexS4) E((type, tbegin, tend, indexS3)
�)(E (type, tbegin,

tend, indexS2))}

Now, we consider RHS

[(〈/seq〉(〈par〉S1(〈Useq〉S3S4〈/Useq〉)
〈/par〉)(〈par〉S2(〈Useq〉S3S4〈/Useq〉)〈/par〉)〈/seq〉)]

We resolve each component
(〈/seq〉(〈par〉S1(〈Useq〉S3S4〈/Useq〉)
〈/par〉) and (〈/seq〉(〈par〉S2(〈Useq〉S3S4〈/Useq〉)
〈/par〉)
separately and than 〈seq〉 the result sets.

By definition

[〈Useq〉S1S2〈/Useq〉] =
{∅}∪[S1]∪Ishift(size(S1, [S2](E(S1/t))))

Combining the above results we get,

[(〈/seq〉(〈par〉S1(〈Useq〉S3S4〈/Useq〉)
〈/par〉)(〈par〉S2(〈Useq〉S3S4〈/Useq〉)〈/par〉)〈/seq〉)]

= {{∅}, {(type, tbegin, tend, indexS1)} {Ishift (size(S1))
(type , tbegin, tend, indexb)} {(type, tbegin, tend, indexS1)
Ishift (size(S1)) (type , tbegin, tend, indexb)(E (type, tbegin,
tend, indexS1))} {(type, tbegin, tend, indexS3) ∪ Ishift(size(S3))

(type, tbegin, tend, indexS4) (E (type, tbegin, tend, indexS3)
�)}}

{(type, tbegin, tend, indexS1) Ishift(size(S1)) (type, tbegin,
tend, indexS3) ∪ Ishift(size(S3)) (type, tbegin, tend, indexS4)

E((type, tbegin, tend, indexS3)
�) (E (type, tbegin, tend, indexS1

))} {(type, tbegin, tend, indexS2) Ishift(size(S2)) (type,
tbegin, tend, indexS3) ∪ Ishift(size(S3)) (type, tbegin, tend,

indexS4) E((type, tbegin, tend, indexS3)
�) (E (type, tbegin,

tend, indexS2))} {(type, tbegin, tend, indexS1)Ishift(size(S1))
(type, tbegin, tend, indexS3) ∪ Ishift(size(S3))(type, tbegin,

tend, indexS4) E((type, tbegin, tend, indexS3)
�)(E (type, tbegin,

tend, indexS1)) ∪ (type, tbegin, tend, indexS2)Ishift(size(S2))
(type, tbegin, tend, indexS3) ∪ Ishift(size(S3))(type, tbegin,

tend, indexS4) E((type, tbegin, tend, indexS3)
�)(E (type, tbegin,

tend, indexS2))}

Hence proving

[(〈par〉(〈seq〉S1S2〈/seq〉)(〈Useq〉S3S4〈/Useq〉)
〈/par〉)] = [(〈/seq〉(〈par〉S1(〈Useq〉S3S4〈/Useq〉)
〈/par〉)(〈par〉S2(〈Useq〉S3S4〈/Useq〉)〈/par〉)〈/seq〉)]

