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Abstract The major challenge in constructing a statisti-
cal shape model for a structure is shape correspondence,
which identifies a set of corresponded landmarks across
a population of shape instances to accurately estimate the
underlying shape variation. Both global or pairwise shape-
correspondence methods have been developed to automa-
tically identify the corresponded landmarks. For global
methods, landmarks are found by optimizing a compre-
hensive objective function that considers the entire popula-
tion of shape instances. While global methods can produce
very accurate shape correspondence, they tend to be very
inefficient when the population size is large. For pairwise
methods, all shape instances are corresponded to a given
template independently. Therefore, pairwise methods are
usually very efficient. However, if the population exhibits
a large amount of shape variation, pairwise methods may
produce very poor shape correspondence. In this paper, we
develop a new method that attempts to address the limita-
tions of global and pairwise methods. In particular, we first
construct a shape tree to globally organize the population of
shape instances by identifying similar shape instance pairs.
We then perform pairwise shape correspondence between
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such similar shape instances with high accuracy. Finally, we
combine these pairwise correspondences to achieve a unified
correspondence for the entire population of shape instances.
We evaluate the proposed method by comparing its perfor-
mance to five available shape correspondence methods, and
show that the proposed method achieves the accuracy of a
global method with the efficiency of a pairwise method.

Keywords Shape correspondence - Statistical shape
modeling - Statistical shape analysis - Shape tree

1 Introduction

Shape plays a central role in computer vision: Many struc-
tures in the real world exhibit specific shapes and, with
appropriate models, such shape information can be quan-
tized and used to facilitate matching, recognition, registra-
tion, segmentation, categorization, classification and many
other computer-vision tasks (Frangi et al. 2001; Rueck-
ert et al. 2001; Veltkamp and Hagedoorn 1999; Matthews
and Schneider 2004; Marsland et al. 2008; Heimann and
Meinzer 2009; Amit and Geman 1997). In particular, be-
ing capable of modeling both the base shape and possi-
ble shape variation of a structure, statistical shape models
have attracted special interest in recent years, with success-
ful applications in many computer vision and medical imag-
ing tasks. For example, in Duta and Sonka (1998), Leven-
ton et al. (2000), van Ginneken et al. (2002), Lekadir et
al. (2007), Heimann and Meinzer (2009), statistical shape
models are applied to guide the segmentation of anatomic
structures that cannot be accurately segmented based solely
on image intensities. In Bookstein (1989, 1997), Shenton
et al. (2002), medical researchers have successfully used
statistical shape models to accurately locate subtle shape
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Fig. 1 Example shape instances in the form of: (a) 2D shape contour
of the corpus callosum, and (b) 3D shape surface of the hippocampus

Y T

Fig. 2 Three example 2D shape contours of the human hand. Each
contour has 24 landmarks, where one white landmark corresponds the
tip of the thumb and the other white landmark corresponds the tip of
the index finger

differences in the corpus callosum and hippocampus be-
tween schizophrenia patients and normal controls. Statistical
shape models have also been successfully applied to facial
identification and recognition (Milborrow and Nicolls 2008;
Seshadri and Savvides 2009; Gonzalez-Jimenez and Alba-
Castro 2007; Lanitis et al. 1995).

Statistical shape models (Dryden and Mardia 1998) are
usually constructed from a population of shape instances of
the structure of interest in the form of smooth 2D shape con-
tours or smooth 3D shape surfaces as shown in Fig. 1. To
construct a statistical shape model, the first step is to identify
a set of landmarks across the population of shape instances,
where a landmark is a point of correspondence used to ex-
amine and measure shape change (Bookstein 1989, 1991).
For example, using the three 2D contours of the human
hand in Fig. 2, one white landmark corresponds the tip of
the thumb and the other white landmark corresponds the
tip of the index finger. This landmark identification step is
usually referred to as (landmark-based) shape correspon-
dence, and it is critical that the identified landmarks be of the
same number, well corresponded, and sufficiently dense to
accurately reflect the geometry of the structure (Richardson
and Wang 2005). With shape correspondence, each shape
instance can be represented by a fixed-dimensional vector
consisting of all its landmarks and a statistical shape model
can then be constructed by using classical statistical analysis
on the entire population of shape instances. In the computer
vision and medical imaging communities, the most widely
used and recognized statistical shape model is the point dis-
tribution model (PDM) (Cootes et al. 1995), which uses a
multivariate Gaussian distribution to model the base shape
and the possible shape variation.

Manually labeling corresponded landmarks across a large
population of shape instances is very laborious and time
consuming, especially for 3D shape surfaces. Furthermore,

manual correspondence can be very subjective and inaccu-
rate: i.e., different experts may produce different manual
correspondences. In recent years, many automatic shape-
correspondence methods have been developed that attempt
to address these limitations. Previous shape correspondence
methods are usually developed by optimizing a specific
physical or mathematical model. In Davies et al. (2002),
the minimum description length (MDL) method considers
the landmarks across the population of shape instances to
be well corresponded when the bit length of the constructed
PDM is minimum. MDL is widely recognized as a state-of-
the-art method for shape correspondence in statistical shape
modeling. In Bookstein (1989), Powell (1995), Wang et al.
(2004), 2D thin-plate splines are used to model the non-
rigid deformation between a pair of shape instances, and
shape correspondence is achieved by identifying landmarks
that minimize the thin-spline bending energy. In Meier and
Fisher (2002), spherical harmonics are used to model the
shape difference between a pair of shape instances, and
shape correspondence is achieved when the spherical har-
monic coefficients minimize the differences in curvature,
distance, and normal direction. In Xie and Heng (2005), the
medial-axis is used to identify matched contour segments
between a pair of shape instances and the landmarks within
these identified segments are considered to be well corre-
sponded when an optimal one-to-one point matching cost is
found.

In computer vision, there are numerous works on shape
matching that may also identify corresponded landmarks
between two shape instances. However, shape correspon-
dence and shape matching have completely different goals
and challenges that require different solutions. Specifically,
shape correspondence is applied to shape instances of the
same deformable structure where the goal is to construct
a statistical shape model to accurately describe the under-
lying shape variation that may be very subtle. In general,
shape matching is developed for recognition with the goal of
identifying a set of matched shape features that can distin-
guish different structures (Belongie et al. 2002; Schmidt et
al. 2007; Basri et al. 1995). Therefore, the landmarks iden-
tified in shape matching are usually not sufficiently dense
and accurate for constructing a statistical shape model. In
addition, most shape matching methods are developed to
match a pair of shape instances and are not concerned
with identifying landmark correspondence over the entire
population. Finally, partial shape matching, i.e., matching
shape instances with possible occlusions, is very important
in many computer vision applications (Dilanni et al. 1996;
Ozcan and Mohan 1997; Bruckstein et al. 1992; Saber et
al. 2005; Veltkamp and Tanase 2005; Latecki et al. 2007,
Chen et al. 2008). However, in shape correspondence the
goal is to construct an accurate statistical shape model for a
structure and, as in previous work on shape correspondence,
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Fig. 3 (a) For global methods, shape correspondence is achieved
when an objective function that considers the entire population of
shape instances is optimized. (b) For pairwise methods, one template

we usually do not consider shape instances with occlusions
(Davies et al. 2002).

In general, the available shape correspondence methods
can be grouped into one of two categories: global methods
and pairwise methods. For global methods a comprehen-
sive objective function that considers the entire population
of shape instances is optimized, as illustrated in Fig. 3(a).
Genetic algorithms (Davies et al. 2002, 2008) and gradient
descent algorithms (Heimann et al. 2005) have been used to
optimize the objective function. These optimization meth-
ods may require a large number of iterations to converge
and are usually vulnerable to be trapped in a local optimum.
While global methods may produce a more accurate shape
correspondence, they tend to be inefficient when the pop-
ulation size is large. For pairwise methods, as illustrated in
Fig. 3(b), one shape instance in the population is designated
as the template whose landmarks are fixed and, for each re-
maining target shape instance in the population, the pair-
wise method identifies a set of landmarks that are well cor-
responded to those on the template. Because pairwise meth-
ods only consider two shape instances at any time, they tend
to be more efficient and scale favorably to the size of the
population. However, since a single template shape instance
is chosen from the population, pairwise methods tend to be
less accurate and can produce poor shape correspondence
when the population has a large amount of shape variation
(Munsell et al. 2008).

Algorithm efficiency is important for shape correspon-
dence and statistical shape modeling. As shown by the ex-
periments in Sect. 3, even for 2D shape instances, an in-
efficient global method may require weeks of compute time
when the population size is large. Such a method may not be
suitable for time-critical applications such as those found in
clinical, near-realtime tracking, or biometric settings, where
the new, incoming shape instances require frequent shape
correspondence to update the statistical shape model. Fur-
thermore, while this paper is focused on 2D shape corre-
spondence, the proposed method can be extended to 3D
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(or reference) shape instance is selected from the population and the
remaining shape instances are corresponded to the template indepen-
dently

shape correspondence and modeling. In the 3D case, manual
correspondence is not an option and inefficient global meth-
ods may take weeks to correspond only a small population
of shape instances (Dalal et al. 2010).

In this paper we attempt to address these limitations by
developing a shape correspondence method that has the ac-
curacy of a global method with the efficiency of a pairwise
method. This is accomplished by first pre-organizing the in-
put population of shape instances into a shape tree, where
each node represents a shape instance, and two nodes con-
nected by an edge represent two similar shape instances. Us-
ing this shape tree, we achieve shape correspondence for the
entire population by corresponding and combining the pair-
wise shape correspondence between neighboring shape in-
stances. In particular, the shape tree is constructed by eval-
uating a rough shape similarity between every pair of shape
instances in the population. This important step allows us
to incorporate the global information underlying the pop-
ulation. From this perspective, our method can be consid-
ered a global method. However, the final refined shape cor-
respondence is performed only between neighboring shape
instances that are very similar. This step ensures that the pro-
posed method is both efficient and accurate.

Related to our work is the shape correspondence method
developed in Hill and Taylor (1994), where a binary tree is
used for finding an initial correspondence for the entire pop-
ulation. Different from our method, only the leaf nodes in
the binary tree represent shape instances in the population,
and each non-leaf node represents the average shape of its
two children. In this binary tree, the neighboring non-leaf
shape instances may not be similar, especially for those near
the root. Therefore, this initial shape correspondence may
not be very accurate and a separate method that does not in-
clude the binary tree is used to improve the correspondence
accuracy (Hill and Taylor 1994). Also related to our work
is the registration and motion analysis method developed in
Cristinacce et al. (2008), where a set of prototype facial im-
ages are organized into a shortest-path tree. Different from



Int J Comput Vis (2012) 97:210-228

213

(b)

Fig.4 Anexample that illustrates the difference between (a) the shape
tree in our method and (b) the shortest-path tree in Cristinacce et al.
(2008). Lower edge weight indicates larger pairwise similarity. In the
shortest-path tree, node 6 is directly connected to the root 1 because
the edge weight between them is less than the total edge weight along
thepath6 >5—>4—>3—>2—1

the shape tree in our method, this tree is constructed by com-
bining the shortest path from each node to a selected root. As
illustrated in Fig. 4, shape correspondence using the short-
est path tree may still have a shape instance (e.g., node 6)
directly connected to the root (e.g., node 1) even if there is
large difference between them. The direct correspondence
between such different shape instances may lead to large er-
Tors.

The remainder of this paper is organized as follows. In
Sect. 2 we describe in detail the proposed method. In Sect. 3
we evaluate the performance of the proposed method against
five available shape-correspondence methods, and in Sect. 4
we provide a brief conclusion.

2 The Proposed Method

In this section a new shape correspondence method that
attempts to address the limitations of global and pairwise
methods is developed. Throughout the remainder of this pa-
per we will focus on continuous 2D shape contours, however
the concepts presented in this paper can be extended to 3D
shape surfaces.

In general, the proposed method first pre-organizes a pop-
ulation of shape instances into a shape tree T = (V, E)
where each node in V is a shape instance in the population,
and each edge in E connects two nodes that represent two
shape instances that are very similar. A root node that repre-
sents the starting template shape instance is selected. Start-
ing from the selected root node, the proposed method re-
cursively walks the shape tree where the current node is the

template shape instance and its child nodes are target shape
instances. Along each edge in the downward path from the
root to the leaf nodes, the landmarks of the target shape in-
stance are corresponded to the fixed landmarks of the tem-
plate instance using a pairwise method. When each node in
the shape tree has been visited, the landmarks of each shape
instance in the shape tree are considered to be well corre-
sponded and the method terminates.

For example, given a population of eleven shape in-
stances in the form of 2D contours that resemble the human
liver, the proposed method first pre-organizes this popula-
tion into the shape tree shown in Fig. 5, where v; is the
root node, and {vs, vg, v, v7, V3, V10, ¥11} are leaf nodes.
Starting from the root node, the proposed method desig-
nates the shape instance at node v; as the template and its
child nodes {v>, v3, v4} as the targets. We sample a set of
landmarks on the template shape instance as the reference
and then identify landmarks on each target, say v, so that
they are well corresponded to the landmarks on the tem-
plate using a pairwise method. When completed, the method
recursively walks the shape tree where the shape instance
at node vy, together with its landmarks, becomes template
and its child nodes {vs, vg, v7} become the targets. Like-
wise, we correspond each target, say vs, to the template
vy by identifying corresponded landmarks on vs. Because
vs is a leaf node the recursive process terminates. After the
pairwise correspondence between each pair of neighboring
nodes, we achieve shape correspondence for the entire pop-
ulation where the landmarks in v; are the common refer-
ence.

This brings us to several key issues which need to be ad-
dressed: (a) How to construct the shape tree, (b) how to de-
termine the root node of the shape tree, (c) the algorithm
used for pairwise shape correspondence, and (d) how to de-
termine and handle error conditions during shape correspon-
dence.

2.1 Constructing the Shape Tree

As mentioned above, we construct a shape tree such that
neighboring nodes represent similar shape instances. In this
paper, we use the minimum spanning tree (MST) algorithm
for this purpose. Given a population of shape instances
S = {Si, i =1,...,n} in the form of continuous 2D con-
tours, we must estimate the similarity between each pair
of shape instances. To achieve this, we first find a rough
correspondence across the entire population. Specifically,
for open shape contours, we can select one endpoint as the
first landmark and equally sample each shape contour for m
roughly corresponded landmarks Ui ={uy, k=1,...,m},
where W;x = (Xjk, yix) is the kth landmark on S;. For closed
shape contours, we need to search for the first corresponded
landmark across the population. Specifically, we use a sim-
ple exhaustive search detailed in Appendix. More efficient
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Fig. 5 An example shape tree
that pre-organizes a population
of shape instances. Each node is
a shape instance in the form of a
2D shape contour that resembles
the human liver

& o 9 ®

algorithms with sub-cubic runtime can also be used for this
purpose (Schmidt et al. 2007).

We then estimate a set U = {U;, i = 1,...,n} of nor-
malized shape instances using the roughly corresponded
landmarks identified above by removing scaling, rotation,
and translation transformations using Procrustes analysis
(Gower and Dijksterhuis 2004). A set of normalized con-
tinuous shape contours S = {S;, i =1, ...,n} is found by
interpolating the m landmarks in U;, i =1, ..., n using the
Catmull-Rom cubic spline (Catmull and Rom 1974). Using
these normalized shape instances, we construct a fully con-
nected, undirected graph with n nodes, where node v; repre-
sents shape instance U;, and the edge (v;, v;) that connects
nodes v; and v;, i # j, is weighted by
w(;, vj) = A(S;, S5) - QWU;, Uj) (D
for i,j = 1,...,n. This edge weight reflects the shape
difference between S; and §;. In this equation, A(S;, S;)
measures the area coincident between two normalized con-
tinuous shape contours §; and S;, and Q(U;, U;j) mea-
sures the nonrigid shape difference between two shape
instances using their roughly corresponded landmarks U;
and U;.

In particular, the first term

_|R(S) N R(S))I

ACSi, S =1
' [R(S;) U R(S))I

©))

measures the shape difference using the Jaccard coefficient,
where R(S) is the region enclosed by the shape contour S

@ Springer

and |R| computes the area of the enclosed region. For open
shape contours, the first and last landmark are tied together
to enclose the region. This term takes a value in [0, 1] where
zero indicates S; is exactly the same as ;.

However, the Jaccard coefficient cannot well describe lo-
cal shape variations between two shape contours. To over-
come this potential limitation the second term

BW;,Uj)+BW;, Up)

QU Uj) = 3

is included that measures the amount of bending energy
required to deform shape instance U; to U; (and shape
instance U; to U;) using the 2D thin-plate spline model
(Bookstein 1989). In Sect. 3, we conducted experiments to
show that both terms in (1) are important for shape-tree con-
struction and accurate shape correspondence.

Given the roughly corresponded landmarks in a template
U; and target U;, the bending energy can be calculated
as
B, Uj)=x"Lx+y'Ly, 3)
where x = (x1, ..., xn)! and y=01,..., ym)T are vectors
that contain the x and y coordinates of the landmarks in the
target U;. The bending matrix L is the m x m upper left
sub-matrix of

K D]
DT o -



Int J Comput Vis (2012) 97:210-228

215

Fig. 6 Example shape trees
where node (a) vy, (b) vy,

(¢) v3, and (d) vy is selected as
the root of the tree. In these
example trees, the length of
edge is proportional to its
weight (i.e. a shorter edge
implies the nodes connected by
this edge represent shape
instances that are very similar)

(a)

©)

where D = (1, X, ¥) is a m x 3 matrix whose column vec-
tors X = (X1, ..., %) and § = J1,..., ym)T are the x
and y coordinates of the landmarks in the template U;.
K is an m x m matrix with element K(a,b) = |u;, —
u,-1,||2 log |lu;jq —ujp|| fora, b =1, ..., m and u,, is the coor-
dinate of the ath landmark in U;. Lastly, because g(U;, U;)
and B(Uj, U;) are typically not the same, the proposed
method averages them to measure the nonrigid shape dif-
ference. If the averaged value is small then the two shape
instances are very similar.

Given this fully connected graph, the minimum spanning
tree T = (V, E) is found using either Prim’s or Kruskal’s
algorithm (Cormen et al. 1990), where T is a connected,
acyclic, undirected graph defined by the set of vertices V
with size |V| = n, and edges E with size |E| =n — 1, whose
total edge weight is minimum.

2.2 Selecting the Root Node of the Shape Tree

The root node defines the common reference for the shape
correspondence of the entire population. It is critical to se-
lect a shape instance that is a good representative of the en-
tire population as the root node. Particularly, the proposed
method propagates the landmarks on the root node to other
nodes by a sequence of pairwise shape correspondences.
The correspondence error accumulates during propagation
and, to reduce this error, we select a root node such that pairs
of shape instances that have a larger shape difference are lo-
cated closer to the leaves in the shape tree. Conceptually, we

(v)
()
OO
ORO,
ONONRONO
(b)
(%)
()
OO
ORD
ONOBNONO
(d)
attempt to push outlier shape instances to the bottom of the
tree so they become (or are located very near) leaf nodes in
the shape tree.
Specifically, given the (unrooted) shape tree T = (V, E)

found in Sect. 2.1, we calculate the cost of selecting node v;
as the root using

VI Vil

Ci)=Y_ > hw(v. B)), )
k=1 j=1

where v; € V, Vi = {Uj, j=1,..., |\7k|} is the set of nodes

with parent vg, h(vy) is the height (Cormen et al. 1990) of
the node in the tree that is equal to the number of edges on
the longest simple downward path from node vy to a leaf
node, and w(vg, Ux;) is the weight of the edge that connects
nodes v and vy; in (1). Note that the parent nodes and node
heights are determined by the selected root v;. For each node
in the shape tree this cost is calculated, and the node with the
least cost is then selected as the root node.

For example, assume we have the shape trees illustrated
in Fig. 6 where the length of the edge is proportional to its
weight and we only consider nodes {v1, vz, v3, v4} that have
degree > 2 as candidate root nodes. If v is selected to be
the root node of the tree as illustrated in Fig. 6(a), its cost
would be

C(vy) =h(v)(w(vy, v2) + w(vy, v3) + w(vy, v4))
+ h(v2)(w(v2, v5) + w(v2, v6))
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+ h(v3)(w(vs, v7) + w(vs, v3))
+ h(vg) (w(vg, v9) + w(v4, V10)).

Using node height 2 (v;) as an additional weight, neighbor-
ing shape instances that are not similar will incur a heavy
cost if located near the selected root node. Likewise, the cost
of selecting vy, v3, and v4 as the root node of the shape tree
are calculated, and the trees are illustrated in Figs. 6(b), (c),
and (d) respectively. The proposed cost favors root nodes
that produce shape trees like those illustrated in Fig. 6(a)
over those in Figs. 6(b—d).

2.3 Shape Correspondence Algorithm

With the shape tree and the selected root node, we can carry
out the shape correspondence by propagating the landmarks
from the root to all the other nodes by a sequence of pairwise
correspondences. This algorithm is outlined in Algorithm 1.
Given the shape tree T and the root node v as input, on line I
the shape instance P at node v is designated as the template.
Line 2 locates the child nodes of v, and the shape instance
U at child node v is designated as the target on line 3.

Algorithm 1 WALKSHAPETREE(T, v)

P < getTemplateShapelnstance(v)

: for all v € children[v] do
U <« getTargetShapelnstance(v)
min¢ (P, U)
WALKSHAPETREE(T, v)

end for

AN AN R ol

On line 4, shape correspondence between the template
and the target is achieved by moving landmarks in the target
to minimize the pairwise shape-correspondence error (Wang
et al. 2004)

¢(P,U)=B(P,U)+1RU),

where S(P, U) measures the bending energy between the
target U and template P using (3) and it is invariant to affine
transformations, R(U) is the shape representation error of
the target shape instance, and A > 0 is a balance factor that
prevents all the landmarks on the target from moving too
close to each other. Specifically, the shape representation er-
ror is defined by

m
RW) =Y Uiy iim = Iklis1m)*.
k=1
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Fig. 7 An illustration of landmark sliding where oy is the sliding dis-
tance along the normalized tangent direction t; for landmark uy, and
u;, is the location of the new landmark projected onto the shape contour

This representation error favors the landmarks on the target
that have a similar spatial distribution to those on the tem-
plate, i.e.,

~

Lk

lk+l|m lk+1|m

where [} is the curve length from landmark vy to w41)m)
in the target, and fk is the curve length from landmark py to
P(k+1jm) in the template.!

The landmarks on the target are iteratively refined by cal-
culating the optimal sliding distances as illustrated in Fig. 7,
where oy is the optimal sliding distance along the normal-
ized tangent direction t; for landmark u,. Because the loca-
tion of ux + oty may not be on the continuous shape con-
tour, a projection step is used to map it back. Specifically, we
project g + axty to a landmark wj on the shape contour so
that /(ug, w)) = o, where /(ug, uy) is the curve length be-
tween uy and u;(. At each iteration, a quadratic solver is used
to find a set of optimal sliding distances o = (a1, ..., &)
that minimize

(x+ Tya)' L(x+ Tya) + (y + Tya)'L(y + Tye)

+ 2 Y (o + oa)larrim = Uagrim + darym)ia)*}, (5)

a=1

where Ty = diag(ty,,...,,,) and T, = diag(z,,...,1,)
are diagonal matrices that contain the x and y coordinates
of the m normalized tangent vectors. Vectors X and y are
the x and y coordinates of the m landmarks in U and L is
the bending matrix defined using the landmarks in P. Addi-
tional constraints

Ik —ar+oak+1 >0, k=1,2,....,m

are imposed to ensure that each landmark does not move
beyond its neighbors, which preserves the topology in the
target. Shape correspondence between P and U is achieved
when the landmarks on the target stop moving or a preset
maximum number of iterations has been reached.

Since the above shape correspondence error contains a
shape-representation term R(U), it is not invariant under

"Modulo arithmetic k + 1|m is used for closed shape contours.
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Fig. 8 An illustration of our
error handling strategy.

(a) Remove edge (v, v) between
two shape instances that fail to
correspond. (b) Create a new
edge (v1, D) to designate a new
template at 0 for the target at ¥

()

certain affine transformations, such as stretching and shrink-
ing. Therefore, this refined pairwise correspondence algo-
rithm may not handle well a pair of template and target
with a large aspect-ratio change. However, this is not an is-
sue to the proposed method because we only apply this re-
fined pairwise correspondence algorithm between very sim-
ilar shape pairs identified by the shape tree. The correspon-
dence between a very different pair is obtained by combin-
ing a sequence of refined pairwise correspondences along
the path between them.

Lastly, on line 5, the shape instance represented by node
v becomes the template and its child nodes become the tar-
gets. The proposed algorithm recursively walks the shape
tree until a leaf node is reached, in a depth-first fashion. The
algorithm terminates after all the nodes have been visited.

2.4 Error Handling

During shape correspondence it is possible that neighbor-
ing shape instances in the shape tree are still quite different
from each other. For such pairs, the pairwise correspondence
algorithm described in Sect. 2.3 may not produce an accu-
rate pairwise correspondence. We can identify such pairs by
evaluating the thin-plate bending energy between the land-
marks on the template and resulting landmarks (after itera-
tive sliding as described in Sect. 2.3) on the target. If this
bending energy is significantly larger than those between
other corresponded pairs, we consider the correspondence
between the template and target as a failure. In this case, we
take the following steps to avoid propagating this pairwise
correspondence error to other shape instances.

Given the shape tree T = (V, E), if the proposed method
fails to correspond the target shape at node v and the tem-
plate shape at node v, we first determine the size of the sub-
tree T = (\7, E ) rooted at node v, where T is a subtree in 7.
If V| < |V|, and the weight w(v, v) of edge (v, V) is sig-
nificantly large, then it is reasonably safe to assume that the
nodes in T represent shape instances that may be outliers in
the population. In such conditions, the subtree T rooted at
is pruned from the tree and discarded.

However, if the number of nodes in | V| is very large we
locate a new template in the shape tree for v. This is achieved
by calculating the set of weights w(vg, v) fork=1,...,|V|
such that vy # v and vy ¢ V, where w(¥, vg) is the weight
of edge (v, vg) in (1). The weights are then sorted in as-
cending order resulting a set of nodes {01, 0y, ..., U;} that
represent candidate templates for ¥, where 0] represents the
node whose edge weight w(?1, ¥) is minimal. As illustrated
in Fig. 8, we remove the edge (v, v) and create a new edge
(01, D) in the shape tree.

The proposed method then attempts to correspond the tar-
get to the template at 0;. If fails again, the next candidate at
02 will become the template. This process is repeated until
the target is successfully corresponded, or when all candi-
dates in {0;, U2, ..., 0} have failed. If all candidates have
failed, the subtree T rooted at node ¥ is pruned from the tree
and discarded.

3 Experiments

In this section we conduct experiments to evaluate the ac-
curacy and efficiency of the proposed shape correspondence
method by comparing with four available global methods
and one pairwise method. The four global methods are:
Thodberg’s implementation (Thodberg 2003) of the MDL
method (T-MDL),> Ericsson and Karlsson’s implementa-
tions (Karlsson and Ericsson 2006) of MDL (E-MDL),
MDL with curvature distance minimization (E-MDL+
CUR), and a reparameterisation method by minimizing Eu-
clidean distance (EUC). For these four global methods, the
maximum number of iterations is set to 20 and we use their
recommended settings. Additionally, for T-MDL the end-
points were not allowed to move for open shape contours.
The pairwise shape correspondence method is the landmark
sliding, insertion, and deletion method (SDI) developed by

2Note that both T-MDL and E-MDL are based on a simplified version
of the description length cost function and are considered to be approx-
imate versions of MDL (Davies et al. 2002).
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Richardson and Wang (2005). In these experiments, we pri-
marily use the shape correspondence benchmark developed
in Munsell et al. (2008) for performance evaluation. We also
conducted experiments to show the importance of root se-
lection for the shape tree and error handling.

The reported performance values were found using a
C++ implementation of the proposed method. Specifi-
cally, the quadratic programming solver used to minimize
the shape correspondence error was implemented using the
OOQP C++ library developed by Gertz and Wright (2001),
where the balance factor A and the maximum number of it-
erations used by the quadratic programming solver were set
to 1 and 20 respectively. The enclosed regions required to
compute the Jaccard coefficient between two shape contours
was computed using the C++ OpenCV image processing
library, and the minimum spanning tree was implemented
using the C4+4 BOOST graph library and Kruskal’s algo-
rithm. Furthermore, the reported CPU times were acquired
on Linux workstations running Intel Xeon 3.4 GHz proces-
sors with 4 GB of RAM.

3.1 Shape Correspondence Benchmark

Performance evaluation of shape correspondence is a very
difficult problem because ground truth is typically not avail-
able and the optimal shape correspondence may not be
unique (Munsell et al. 2008). Davies et al. propose three
measures to describe the compactness, specificity, and gen-
erality of the constructed PDM and suggest the use of
these three measures to evaluate the shape correspondence
(Davies 2002; Styner et al. 2003). Without using ground
truth, these three measures may not provide an objective
shape-correspondence evaluation, as demonstrated by an ex-
ample in Sect. 2.3 of Munsell et al. (2008). Shape correspon-
dence and the resulting PDM can be used for different vision
applications, such as shape classification and segmentation.
We can use such applications to evaluate shape correspon-
dence, however, the evaluation result using one application
may not be generalized to others.

In our experiments, we primarily use the shape corre-
spondence benchmark developed in Munsell et al. (2008)
for performance evaluation. Like the compactness, speci-
ficity, and generality measures in Davies (2002), Styner et al.
(2003), the benchmark evaluates the accuracy of the result-
ing PDM to estimate shape correspondence performance.
The major difference is that this benchmark starts from a
known ground truth PDM, which is randomly sampled to
generate a population of shape instances. A shape corre-
spondence method is then applied to correspond these shape
instances and a derived PDM is constructed using the cor-
respondence results. Finally shape-correspondence perfor-
mance is evaluated by checking if the derived PDM ac-
curately recovers the probabilistic shape-space defined by
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Fig. 9 Landmarks identified for constructing a ground-truth PDM that
resembles the shark. Landmarks 1, 21, 58, 71, 103 were manually iden-
tified, and the remaining 123 landmarks were automatically placed at
equal arc-length intervals between these manually identified landmarks

e Y
= ||

Fig. 10 From left to right, and fop to bottom, the mean shapes of the
ground-truth PDM that resemble the corpus callosum, human femur,
human face silhouette, human liver, human heart valve, human kidney,
shark, human metacarpal, and human hand

a ground-truth PDM. By using a ground-truth PDM, this
benchmark is more objective than the compactness, speci-
ficity, and generality measures.

In this paper, we construct the ground truth PDM by man-
ually identifying a set of corresponded landmarks over a
small population of real shape instances. In particular, man-
ual correspondence is established by first locating five to
nine landmarks with distinguished geometric features, such
as high curvature points or turning points. The remaining
landmarks are then automatically placed at equal arc-length
intervals between these manually identified landmarks. For
example, along the shape contour of the shark shown in
Fig. 9, manual correspondence identifies the snout (land-
mark 1) and the tips of the four fins (landmarks 21, 58,
71, 103). The remaining 123 landmarks are then sampled at
equal arc-length intervals between these five landmarks: 19
are placed between landmarks 1 and 21, 36 between land-
marks 21 and 58, 12 between landmarks 58 and 71, 31 be-
tween landmarks 71 and 103, and 25 between landmarks
103 and 128. Using this strategy, we construct nine ground-
truth PDMs that resemble the human corpus callosum (cor-
pus callosum for short), human femur, human face silhou-
ette (face silhouette for short), human liver, human heart
valve (heart valve for short), human kidney, shark, human
metacarpal, and human hand structures, as shown in Fig. 10,
for our experiments.

For each ground-truth PDM, we randomly generate a
population of 1,200 synthetic shape instances for testing
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shape correspondence. In our experiments, each shape cor-
respondence method is asked to identify 64 corresponded
landmarks across the entire population. To check whether
the derived PDM recovers the probabilistic shape space of
the ground truth PDM, we randomly generate 2,000 syn-
thetic shape instance from each PDM and then calculate
the bipartite measure A, and the Wald-Wolfowitz measure
Ay as suggested in Munsell et al. (2008). For both mea-
sures, smaller values indicate better performance. These
two measures usually lead to similar results when com-
paring different shape correspondence methods. However,
the Aj; measure is based on the Jaccard coefficients be-
tween shape instances generated from the derived PDM and
the ground-truth PDM. It reflects the detailed correspon-
dence errors between shape instances. The A, measure only
counts the number of certain edges in a tree where nodes
represent shape instances generated from the derived PDM
and the ground-truth PDM. It does not reflect the detailed
correspondence error between shape instances. Therefore,
the A, measure may be more accurate, but is more sensi-
tive to noise (e.g., outliers) than the A, measure. In eval-
uating two shape correspondence methods, if both mea-
sures indicate that one method is better than the other, we
then defer to the A, measure since it is more accurate. If
two measures are inconsistent, we defer to the A, mea-
sure since it is more robust. By using both measures, we
can achieve more thorough and comprehensive performance
evaluations.

3.2 Shape Correspondence Performance

As mentioned above, in the shape correspondence bench-
mark the A, and A, measures are obtained by random
simulation: We compare a set of synthetic shape instances
randomly generated from the ground-truth and the derived
PDMs. To increase the statistical confidence of these mea-
sures, we perform 50 rounds of random simulation for
each derived PDM to obtain a median value and a range
for both A, and A, measures. The box plots in Fig. 11
show the median, first quartile, third quartile, inter-quartile
range, lower extreme (Q1 — 1.5 % IQR), and upper extreme
(03 + 1.5 % IQR) statistics of the A, measure for the test
shape correspondence methods over 50 rounds of random
simulation. Note that ‘TRUTH’ indicates the Aj; measure
between the ground-truth PDM and itself, which can be
treated as a lower bound for this measure. ‘MST’ indicates
the proposed method. Out of the six test methods (MST, E-
MDL, E-MDL+CUR, EU, T-MDL, SDI), we only show the
four with better performance, i.e., with smaller A, values. In
each box plot, the selected methods are sorted increasingly
in terms of the median A; value from left to right. Like-
wise, the box plots illustrated in Fig. 12 show performance
in terms of the A,, measure.

From the box plots in Fig. 11, we can see that the pro-
posed method achieves the best A, performance for the
ground-truth PDMs that resemble the human femur, hu-
man hand, face silhouette, human metacarpal, and heart
valve. The proposed method achieves a comparable Ay
performance to that of E-MDL for the ground-truth PDM
that resembles the shark. The proposed method achieves a
comparable A, performance to that of both E-MDL and
E-MDL~+CUR for the ground-truth PDM that resembles
the corpus callosum and human liver. However, the inter-
quartile range value for E-MDL~+CUR is greater than the
proposed method and MDL for the ground-truth PDM that
resembles human liver. E-MDL demonstrates the best A
performance for the ground-truth PDM that resembles the
human kidney. From the box plots in Fig. 12 we can see
that the proposed method achieves the best A, perfor-
mance for the ground-truth PDMs that resemble the human
femur, shark, human hand, corpus callosum, human liver,
human metacarpal, and heart valve. The proposed method
achieves a comparable A,, performance to that of E-MDL
for the ground-truth PDM that resembles the face silhou-
ette, and E-MDL demonstrates the best A, performance
for the ground-truth PDM that resembles the human kid-
ney. The performance of the EUC, T-MDL and SDI methods
consistently rank in the bottom half of the six test meth-
ods. These results show that the performance of the pro-
posed method is comparable to, or even better than, the
state-of-the-art global shape-correspondence methods, such
as E-MDL.

The CPU time (in seconds) taken by the six test shape
correspondence methods to correspond 1,200 shape con-
tours, randomly generated from each of the nine ground-
truth PDMs, is provided in Table 1. For the proposed
method, the reported CPU time includes both the initial
correspondence, shape-tree construction, and the correspon-
dence algorithm outlined in Sect. 2.3. We can see that the
proposed method is at least 95 times faster than E-MDL
for the ground-truth PDMs that resemble the human femur,
shark, corpus callosum, human liver, face silhouette, and
heart valve, and at least 90 times faster than E-MDL for the
ground-truth PDMs that resemble the human hand and hu-
man kidney. The proposed method is at least 240 times faster
than E-MDL+CUR for the ground-truth PDMs that resem-
ble the human femur, shark, corpus callosum, human liver,
human kidney, face silhouette, and heart valve, and at least
230 times faster than E-MDL+CUR for the ground-truth
PDMs that resemble the human hand and human metacarpal.

To put the CPU times in perspective, for the human hand,
E-MDL took approximately five days and E-MDL-+CUR
took approximately 13 days to identify 64 corresponded
landmarks across a population of 1,200 shape instances
whereas the proposed method only took approximately one
hour and eighteen minutes. This is a significant performance
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Fig. 11 Shape correspondence evaluation in terms of the A, measure

tradeoff for a very small amount of gain in A, and A,
performance that may be achieved by either E-MDL or
E-MDL+-CUR for the ground-truth PDMs that resemble the
shark, human liver, face silhouette, and human kidney. Even
though SDI (a pairwise method) is approximately 2 times
faster than the proposed method for all the nine ground-truth
PDMs, its A, and A, performance is consistently worse
than the proposed method because it does not consider the
global information underlying the entire population.

A detailed analysis of the algorithm complexity can be
difficult because it depends on the selection of the basic
operations. From a theoretic perspective, the shape tree con-
struction involves the initial correspondence and shape sim-
ilarity estimation between every pair of shape instances,
which takes O(n?) time, and the refined correspondence
only involves the pairwise correspondence between neigh-
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boring shape instances in the shape tree, which takes O (n)
time. However, the initial correspondence for shape tree
construction consists of very simple operations without
moving landmarks (see Appendix) and the refined corre-
spondence runs many iterations of the quadratic solver (see
Sect. 2.3), which itself is a high-complexity algorithm. In
our experiments, the refined correspondence on shape tree
actually takes most of the CPU time reported in the first
column of Table 1.

3.3 Effect of Shape Similarity Selection

In constructing the shape tree, we measure the rough
shape similarity using (1), which consists of two terms:
The Jaccard-coefficient-based A(S;, S;) and the bending-
energy-based Q(U;, Uj). We conducted experiments to
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Table 1 CPU time (in seconds)
taken by the six test shape MST E-MDL E-MDL+CUR EUC T-MDL SDI
correspondence methods
Human femur 4704 457118 1160655 82250 160604 1384
Shark 4803 458735 1156086 93347 164785 1341
Human hand 4858 447094 1136918 82468 155979 1377
Corpus callosum 4773 456835 1195473 80036 226988 1336
Human liver 4745 459113 1167596 81626 136824 1362
Human kidney 4686 441907 1167605 84861 167905 1350
Face silhouette 4743 456099 1167632 92663 158910 1367
Human metacarpal 4788 433256 1143910 84968 140179 1342
Heart valve 4765 487861 1154080 79208 140991 1344

show that both terms are important for shape-tree construc-
tion and shape correspondence. The box plots in Figs. 13
and 14 show the A, and A, performance of the proposed
method when using different shape similarity measures for
the shape tree construction. In particular, ‘MST-JAC’ indi-

cates the use of only A(S;, §;) for measuring shape sim-
ilarity, ‘MST-BE’ indicates the use of only Q(U;, U;) for
measuring shape similarity, and ‘MST’ indicates the use of
both terms as defined in (1) for measuring shape similarity.
From Figs. 13 and 14, we can clearly see that the perfor-
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Fig. 13 Shape correspondence performance in terms of the A, measure when using different shape similarity measures for constructing the shape
tree

mance of ‘MST’ is consistently better than ‘MST-BE’ and
‘MST-JAC’. Therefore, the combination of these two terms
in (1) can produce a better shape tree and leads to more
accurate shape correspondence.

3.4 Performance Comparison to a Semiautomatic Method

We also conducted experiments to compare the performance
of the proposed method against a semiautomatic method.
This semiautomatic method starts by manually identifying a
small set of corresponded landmarks with distinguished geo-
metric features, followed by automatically identifying more
landmarks at equal arc-length intervals between these man-
ually identified landmarks. In the above benchmark, all the
shape instances for testing shape correspondence are gener-
ated from a ground-truth PDM, which contains a set of man-
ually identified landmarks as shown by landmarks 1, 21, 58,
71, and 103 in Fig. 9. Therefore, on each generated shape in-
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stance, the true locations of these manually identified land-
marks are actually known. Certainly this information is not
passed to the above test shape correspondence methods be-
cause, in real applications, such information is unavailable.
For each generated shape instance, we use the true loca-
tions to simulate the manually labeled landmarks to evaluate
semiautomatic shape correspondence performance. Clearly,
this simulation provides the best possible manual labeling
because, in practice, manual labeling typically contains er-
rors. Therefore, the reported performance of the semiauto-
matic method in this experiment is ideal, and may not be
achieved in practice. Figures 15 and 16 show the A, and
Ay, performance of this semiautomatic method (indicated
by ‘MANUAL’) and the proposed method (‘MST’). We can
see that, for the ground-truth PDMs that resemble the hu-
man femur, human hand, face silhouette, human metacarpal,
and heart valve, the proposed method achieves the same, or
very similar, A and A,, performance to the semiautomatic
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Fig. 14 Shape correspondence performance in terms of the A, measure when using different shape similarity measures for constructing the shape

tree

method. For the ground-truth PDMs that resemble the cor-
pus callosum, shark, and human liver, the proposed method
has comparable A, and A, performance to the semiauto-
matic method. For the ground-truth PDM that resembles the
kidney, the semiautomatic method shows a better A, and
Ay, performance than the proposed method.

3.5 Effect of Root-Node Selection

In this section we conduct experiments to show how the per-
formance may be affected by choosing different root nodes
for the shape tree. Specifically, by taking each shape in-
stance (out of n = 1,200) as the candidate root, we calculate
its root-selection cost C(v;) using (4), where v; is the node
the represents the considered shape instance. We then sort
all the n shape instances in terms of their root-selection cost
in increasing order. In the sorted list, we construct three cat-
egories of shape instances—Categories 1, 2 and 3—by tak-

ing the first five, median five, and last five shape instances,
respectively. In total, we have 15 shape instances. We take
each shape instance as the root to construct a shape tree for
shape correspondence. The above-mentioned benchmark is
then used for performance evaluation. Based on the median
and IQR performance (the A, or A, measures) resulting
from the five shape instances in each category, we can com-
pare the performance by selecting a root from different cate-
gories, as shown in Tables 2 and 3. We can see that, selecting
the root from Category 1 leads to consistently better perfor-
mance than selecting the root from Categories 2 and 3.

3.6 Performance on Real Data and Effect of Error
Handling

In this section, we collected a set of shape instances of a real

object for performance evaluation. As mentioned before, it
is difficult to objectively evaluate the shape-correspondence
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Fig. 15 Shape correspondence performance in terms of the A, measure by using the semiautomatic method (‘MANUAL’) and the proposed

method (‘MST’)

Table 2 Shape correspondence
performance in terms of the Ay
measure by selecting the root
from different categories for the
shape tree

Category-1 Category-2 Category-3

Median I0OR Median IOR Median IOR
Human femur 0.05241 0.00028 0.05254 0.00028 0.05281 0.00029
Shark 0.10825 0.00095 0.10870 0.00108 0.10945 0.00140
Human hand 0.07827 0.00089 0.07854 0.00096 0.07911 0.00102
Corpus callosum 0.12868 0.00082 0.12949 0.00099 0.13094 0.00111
Human liver 0.11582 0.00608 0.11661 0.00640 0.11772 0.00632
Human kidney 0.08449 0.00049 0.08476 0.00048 0.08521 0.00061
Face silhouette 0.07853 0.00076 0.07885 0.00100 0.07920 0.00106
Human metacarpal 0.05626 0.00036 0.05643 0.00031 0.05715 0.00040
Heart valve 0.11478 0.00069 0.11541 0.00088 0.11892 0.00369

performance on these real shape instances because ground

truth is not available. Therefore, the A, and A,, measures

used in the above benchmark are not applicable to real data.

@ Springer

Instead, we evaluate the shape-correspondence performance

by checking the compactness, specificity, and generality of

the derived PDM (Davies 2002; Styner et al. 2003).
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Fig. 16 Shape correspondence performance in terms of the A,, measure by using the semiautomatic

method (‘MST’)

Table 3 Shape correspondence
performance in terms of the A,,
measure by selecting root from
different categories for the
shape tree

method (‘MANUAL’) and the proposed

Category-1 Category-2 Category-3

Median I0OR Median IOR Median IOR
Human femur 0.54227 0.01151 0.54427 0.01126 0.54877 0.01051
Shark 0.56066 0.01101 0.56428 0.01101 0.57279 0.01351
Human hand 0.58229 0.01001 0.59167 0.01176 0.59667 0.01276
Corpus callosum 0.55865 0.01151 0.56503 0.01176 0.57466 0.01201
Human liver 0.66583 0.01101 0.66983 0.01126 0.67546 0.01051
Human kidney 0.57979 0.01176 0.58242 0.01001 0.58667 0.01101
Face silhouette 0.51976 0.01026 0.52326 0.01076 0.52751 0.01126
Human metacarpal 0.67871 0.01326 0.69210 0.01276 0.70435 0.01026
Heart valve 0.59155 0.01126 0.59355 0.01051 0.60730 0.01751

Particularly, we use these real data to evaluate the effect

of the error handling strategy developed in Sect. 2.4. In all

the above experiments, synthetic shape instances generated

from a ground truth PDM are used for evaluation and they

usually contain very few outliers that are very different from

other shape instances, including other outliers, in the pop-
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ulation. Therefore, although we enable the error handling
in all the above experiments, it may not introduce much im-
provement to the shape correspondence performance. In this
section, we conduct experiments to show that the error han-
dling can improve the performance on real data. In our ex-
periments, a correspondence between a template and target
is treated as a failure if their bending energy is three times
larger than the average bending energy between the corre-
sponded neighboring pairs along the path from the template
to the root in the shape tree.

In this experiment, we collected 20 images of the right
hand from four different people, totalling 80 images. In 72
of them (18 from each person) individual fingers are ar-
bitrarily moved, scrunched, or bent to cover the possible
shape variation of the hand. A subset of these hand im-
ages are illustrated in Fig. 17(a). Additionally, we purposely
inserted 8 images (two from each person) to test the pro-
posed error handling strategy. In general, these 8 images

Person 1

Person 2

Person 3

Person 4

(a)

Fig. 17 Sample real images collected for performance evaluation

(b)

may have two fingers very close to each as illustrated in
Fig. 17(b).

Each of the 80 images are then converted to a binary
image by simple intensity thresholding (the background is
green) and from each binary image, we construct a shape
contour. We use these 80 real shape contours for evaluat-
ing the performance of the proposed shape-correspondence
methods and the other comparison methods. The results are
shown in Fig. 18 where, for all the three measures, a smaller
value indicates better performance. As in Davies (2002),
in Fig. 19 we also visually demonstrate the mean shape
of the derived PDMs and the shape instances after varying
the principal mode by +30, where o is the standard de-
viation along the principal direction of the PDM. We can
see that the proposed method with error handling (‘MST’)
achieves the best performance in terms of all the three mea-
sures.

4 Conclusion

In conclusion, this paper introduced a new method that
pre-organizes a population of shape instance for landmark-
based shape correspondence. Using a minimum spanning
tree algorithm, the population of shape instances are pre-
organized into a shape tree, where each node represents
a shape instance and each edge connects two very simi-
lar shape instances. This pre-organization step allows us
to incorporate global information underlying the popula-
tion into shape correspondence. Shape instances are then
corresponded between neighboring shape instances in the
shape tree in a pairwise fashion, efficiently and accurately.
The performance of the proposed shape correspondence
method was evaluated against four global methods and one
pairwise method. Quantitative evaluation results showed

Legend
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Fig. 18 The compactness, generality, and specificity for the E-MDL, T-MDL, MDL+CUR, SDI, EUC, the proposed method (MST), and the
proposed method with error handling disabled (MST w/o EH) on real data
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Error
Handling
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Fig. 19 A visual demonstration of the PDMs derived using different
shape correspondence methods

the proposed method achieves a performance that is better
than, or comparable to, the state-of-the-art global methods
while using much less CPU time: At least 90 times faster
than the global method that demonstrates the best perfor-
mance.
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Appendix: Initial Correspondence for Closed Contours

Given a population of shape instances S= {S‘i, i=1,...,n}
in the form of closed, continuous shape contours, we con-
struct an initial correspondence by uniformly sampling m
initial landmarks on each shape instance and align these ini-
tial landmarks across different shape contours by circularly
shifting the indices of these landmarks. More specifically,
let Ui ={u;x, k=1,...,m} be the sequence of m initial
landmarks sampled on S;. We can build the initial corre-
spondence between U; and U j by circularly shifting the in-
dices of the landmarks in U ; and then calculate the shape
similarity between them using (1). After exhaustively trying
all m circular shifts of the landmarks in U j» we select the
shift that results in the best shape similarity to U; to build
the initial correspondence. By building such an initial corre-
spondence between each shape instance and U;, we obtain
an initial correspondence across the entire population. Note
that this initial correspondence is very fast compared to the
refined correspondence discussed in Sect. 2.3 because no
landmark will move in the initial correspondence.
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